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SUMMARY The importance of the microbiome to human health is increasingly recog-
nized and has become a major focus of recent research. However, much of the work
has focused on a few aspects, particularly the bacterial component of the microbiome,
most frequently in the gastrointestinal tract. Yet humans and other animals can be colo-
nized by a wide array of organisms spanning all domains of life, including bacteria and
archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths,
and viruses. As they share the same host niches, they can compete with, synergize with,
and antagonize each other, with potential impacts on their host. Here, we discuss these
major groups making up the human microbiome, with a focus on how they interact
with each other and their multicellular host.

KEYWORDS archaea, bacteria, bacteriophage, cross-domain, fungi, helminths,
microbiome, protozoa, virus

INTRODUCTION

Over the past several years, the importance of the microbiome to human health and
disease has become increasingly recognized. The trillions of microbes, outnum-

bering even our own cells, that live in and on us can protect us from colonization by
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pathogens, promote immunoregulation and tolerance by our own immune systems,
and digest many of the foods that we ourselves cannot. However, they can also
contribute to disease, if their balance is disrupted by antibiotics, immune dysregulation,
or other disturbances. The focus of this field has largely been on the bacterial members
of the microbiome, as they make up the largest proportion of the living organisms
which constitute the microbiota. However, the bacteria exist alongside a diversity of
organisms from other domains of life, including archaea, fungi, other unicellular
eukaryotes, and in some cases helminths, as well as various families of viruses. All of
these components can interact with each other and the host to impact health and
disease. In this review, we discuss the various elements of the microbiome, with
particular focus on the cross-domain interactions within the microbiota and with the
host.

BACTERIA AND ARCHAEA

Perhaps the clearest cross-domain interaction related to the microbiome occurs
between the commensal bacterial and archaeal microbiota and the eukaryotic host.
Colonizing microbes play a number of significant roles in the health of their host, and
studies of germfree animals have revealed that a lack of microbiota results in metabolic
and immunological differences in comparison to conventional animals with a normal
microbiota. Here, we provide an overview of the composition of the human bacterial
and archaeal microbiota and briefly review two major impacts of these commensals on
the human host: liberation of energy and nutrients from food components and
stimulation of the immune system to promote a tolerogenic environment.

Of all of the research on the microbiome, it is the bacterial component, sometimes
called the “bacteriome” to differentiate it from other members of the microbiota, that
has received the lion’s share of the attention. Of that work, the majority has examined
the gut bacteriome, with publications on that topic dwarfing the combined works on
the oral, skin, and urogenital microbiota (1). A number of robust tools and pipelines
have been developed and made available for researchers to assess both the taxonomic
classification and function of bacteria at multiple body sites and associated with various
disease states (2–4). Importantly, these methods allow analysis of the bacterial micro-
biota without the need to culture the species present; researchers can instead extract
DNA or RNA from samples of interest and use next-generation sequencing technologies
to assess the composition and/or function of the microbes.

The most common method to analyze the composition of the gut bacteria is marker
gene sequencing, generally using the 16S rRNA gene. Universal primers to amplify
various regions of the 16S rRNA gene have been developed, and several databases exist
to use such amplicons to taxonomically classify the bacterial sequences present within
a biological sample (3–11). This method has the benefit of being relatively simple and
inexpensive and has thus been used extensively for bacteriome research. More recently,
methods have been developed to predict bacterial metagenomes from 16S rRNA gene
sequencing data (12, 13). However, there are several limitations: technological limits on
amplicon length have led to the use of various subsections of the 16S rRNA gene rather
than its full length, the primers used for each of these subsections may introduce biases
for or against certain taxa during amplification, and different bacterial taxa have
different numbers of copies of the 16S rRNA gene (2–4). Additionally, while this method
can also be used to study archaea, the primers are typically optimized to detect
bacterial communities and frequently fail to amplify archaeal 16S rRNA gene sequences
in useful numbers. Furthermore, the databases for archaeal sequences are less com-
plete, potentially leading to an underrepresentation of archaea (14).

Accordingly, there is increasing interest in using shotgun metagenomics to profile
the microbiome, as this removes some of the biases of marker gene amplicon sequenc-
ing and has the added benefit of assessing the functional potential of all of the genes
present in a microbial community (2–4, 15, 16). Furthermore, metagenomic approaches
can assess the entire breadth of the community of interest, including eukaryotes,
archaea, and viruses, rather than simply the bacterial members (2–4, 15, 16). Even
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metagenomics, however, can provide information only about the composition of the
community, and tools like multiorganism transcript arrays, metatranscriptomics, meta-
proteomics, and metabolomics are required to analyze the actual functions being
performed by the communities at a given time (17–21). However, these -omics meth-
ods are relatively expensive and hard to implement, and they suffer from a lack of
complete and fully annotated reference databases; as such, the ability to define the
contributions of so-called “microbial dark matter” not represented in databases (in-
cluding many archaea) is limited (14, 22, 23). Thus, at this time, -omics methods are less
common than 16S rRNA gene sequencing, but they are becoming more widespread
and are revealing important information about the microbiota (17–19).

Composition of the Bacterial and Archaeal Microbiota

Bacteria and archaea are present along the gastrointestinal tract, with the greatest
density present in the colon, and have received much research attention due to their
roles in digestion and immune function (24). Unsurprisingly, given the largely anaerobic
environment of the gastrointestinal tract, the gut microbiota are primarily facultatively
or strictly anaerobic (25, 26). The specific taxonomic composition can vary significantly
between individuals, impacted by different lifestyles, diets, and ages, although gener-
ally, they are fairly stable over time within the same individual (27, 28). Insights from
metagenomics have led to the conclusion that rather than a set of specific taxa
comprising a “core microbiota,” there may instead be core functions that can be
provided by different bacterial taxa in different individuals (27, 29, 30). However,
metatranscriptomics suggests that there is still interindividual variation in transcription
levels, which is intermediate between the highly idiosyncratic taxonomic composition
and the more conserved functional capacity (31, 32). In the human gut, there appears
to be a core metatranscriptome composed largely of housekeeping genes, with a much
larger variable metatranscriptome of specialized pathways, suggesting that gut com-
munity transcription is context-specific and adaptive to the individual environment
(32).

Despite this variation, sequencing, particularly large-scale efforts including the
Human Microbiome Project and Meta-HIT, has revealed some common patterns of
bacterial composition (27, 33). The human gut is generally colonized by hundreds of
species-level bacterial taxa, which typically are dominated by members of only a few
phyla; Firmicutes, Bacteroidetes, and Proteobacteria are most abundant, with Actinobac-
teria and Verrucomicrobia making up smaller proportions (Fig. 1) (25, 27, 30, 34). It
should also be noted that the gut microbiota is not a single, homogenous community
but instead displays significant three-dimensional organization. First, the gut is com-
prised of several unique environments, in particular the stomach, the small intestine
(divided into the duodenum, jejunum, and ileum), and the large intestine (colon), each
of which has different properties and harbors its own community (35). To date, the vast
majority of research has focused on the colon due to the comparative ease of obtaining
fecal samples and the fact that it contains by far the highest density and numbers of
bacteria (24). Second, even within a given compartment, bacteria may differ along the
transverse axis, with different populations found in the lumen versus the mucosa (35).

Despite the difficulties in studying the stomach and small intestine, techniques
including endoscopy and biopsy have allowed profiling of these microbial communi-
ties. In general, the microbial community becomes increasingly anaerobic along the
gastrointestinal tract, with the stomach and small intestine containing a greater pro-
portion of facultatively aerobic taxa than the largely anaerobic colon (36). Work in the
stomach has frequently focused on the species Helicobacter pylori, given its close
association with the gastric mucosa and public health relevance as an organism linked
to gastric ulcers and cancers (37–40). However, the presence and levels of H. pylori vary
between individuals, and a combination of culturing and amplicon sequencing tech-
niques has revealed that other genera can be found in the gut despite the harshly
acidic conditions. While exact findings have differed, Streptococcus has been consis-
tently observed in relatively high proportions, along with genera including Prevotella,
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Lactobacillus, Rothia, Veillonella, and Propionibacterium (41–45). Additionally, while the
stomach lumen certainly contains transient microbes from the mouth and nose, the
gastric community was shown to be distinct from either of these groups (43).

The small intestine also contains a distinct community of bacteria, typically contain-
ing the genera Streptococcus and Veillonella; other frequently encountered taxa include
Escherichia, Clostridium, Turicibacter, and Lactobacillus (46). Like the stomach, it is less
hospitable to bacterial life than the colon, with a faster transit time, higher acidity, more
antimicrobial molecules, and an influx of bile acids, and therefore, it is less densely
populated along most of its length (46). Studies of effluent from subjects with ileos-
tomies suggest that the small intestinal bacterial microbiota tends to be more tempo-
rally variable than that of the colon, likely due to an increased short-term sensitivity to
dietary intake given the small intestine’s primary role in host nutrient absorption (47).
Indeed, metatranscriptomics indicates that the maintenance of the small intestinal
bacteria is driven by the rapid uptake and utilization of simple carbohydrates, which
could make this population particularly sensitive to the composition of ingested food
(48). In particular, the genus Streptococcus expressed genes for these functions at high
levels, matching their high relative abundance in the population (48). However, the
community is not necessarily consistent along the entire small intestine, and there is
evidence that the bacterial composition becomes more similar to that of the colon in
the terminal ileum (46).

FIG 1 Outline of the major components of the human microbiota, summarized across body sites,
including the gastrointestinal tract, oral cavity, vaginal mucosa, and skin. (Top left) Bacteria are the most
abundant and include members of the phyla Firmicutes (Clostridium, Lactobacillus, and Enterococcus),
Bacteroidetes (Bacteroides and Prevotella), Proteobacteria (Escherichia and Acinetobacter), Actinobacteria
(Bifidobacterium), and Verrucomicrobia (Akkermansia). (Top right) Based on metagenomics, human-
associated fungi are significantly outnumbered by the bacteria; they are mainly members of the phylum
Ascomycota (Candida, Saccharomyces, Aspergillus, and Malassezia), but some Basidiomycota are detect-
able. Humans may also be infected with nonfungal eukaryotic pathogens, which are not shown here.
(Bottom right) Viruses in the human microbiota are primarily bacteriophage and likely outnumber the
bacterial population by at least 10-fold. The virome is largely composed of Caudovirales (Siphoviridae,
Myoviridae, and Podoviridae) and Microviridae, along with some eukaryotic host viruses. (Bottom left)
Helminths are now typically absent from humans in high-income nations but still parasitize billions
worldwide to various degrees of severity. They include trematodes (flatworms), nematodes (round-
worms), and cestodes (tapeworms).
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The colon is more diverse, densely colonized, and anaerobic. Firmicutes and Bacte-
roidetes make up the majority of bacteria, although Proteobacteria, Actinobacteria, and
Verrucomicrobia are typically present in lower proportions. Within these phyla, a
number of commonly prevalent bacterial families may be identified, including Bacte-
roidaceae, Clostridiaceae, Prevotellaceae, Eubacteriaceae, Ruminococcaceae, Bifidobacte-
riaceae, Lactobacillaceae, Rikenellaceae, Verrucomicrobiaceae, and Enterobacteriaceae (1,
30, 34, 46). Interestingly, within the phylum Bacteroidetes, individuals tend to be
dominated by either Bacteroides or Prevotella based on their diet and lifestyle. Studies
show that urban subjects eating a “Western” diet high in protein and fat tend to be
dominated by Bacteroides, while members of rural communities eating more plant-
based, fiber-rich diets are dominated by Prevotella (49). Additionally, the archaeal genus
Methanobrevibacter, which feeds on metabolites from other gut microbes and produces
methane, is typically found in the human colon and is highly active; along with other
less dominant methanogenic archaea, these organisms drive bacterial metabolism by
removing hydrogen from the local environment and thereby making polysaccharide
fermentation more thermodynamically favorable (1, 30, 32, 34, 50–53).

Furthermore, it has become increasingly recognized that the gut microbial commu-
nity displays a transverse organization, with a distinct composition in the lumen relative
to the mucosa (25, 46, 51, 54). One reason for this is that luminal and fecal samples
contain long-term residents alongside transient bacteria and DNA from the digesta,
which is less true for mucosal communities. Another reason is that the intestinal mucus,
composed of highly glycosylated mucin proteins, provides a distinct niche for certain
microbiome members. In the colon, a continuous mucus barrier covers the epithelium,
organized into a dense inner layer that blocks most bacteria and a loose outer layer
adjacent to the lumen; in the small intestine, there is only a single layer, and it is
patchier than in the colon (46, 55, 56). The outer layer is home to a number of bacteria,
including primarily mucolytic species such as Akkermansia muciniphila, mucolysis-
capable species such as Bacteroides thetaiotaomicron and some Bifidobacterium species,
and nonmucolytic (and even asaccharolytic) species that can feed on downstream
metabolites from this process (46, 54, 57). There is also an oxygen gradient in the
intestines, with high oxygen concentrations at the epithelium relative to the largely
anaerobic lumen (58). This gradient tends to favor an enrichment of species that are
more aerotolerant closer to the epithelium, including facultative anaerobes and those
possessing mechanisms, such as catalase and superoxide dismutase, to deal with
oxidative stress (58, 59). Finally, some bacteria have adaptations for penetrating the
mucus layers and coming into close contact with the epithelium, such as the seg-
mented filamentous bacteria (SFB) (sometimes known as “Candidatus Arthromitus” or
“Candidatus Savagella”), while others can shelter in the crypts of the small intestine or
the folds of the proximal colon (59–61). As a result of these factors, a number of studies
in humans and animal models have found that the communities and transcripts of the
lumen or feces are distinct from those associated with the mucus and/or epithelium in
the same individual (46, 51, 57–59, 62–65). Interestingly, even species found in both the
lumen and mucus may behave differently based on their location, with work demon-
strating differential transcriptional profiles observed between luminal and mucus-
associated members of the same species (57).

In contrast to the bacteria in the colon, the oral community displays relatively low
interindividual variation (known as beta diversity) but has comparably high levels of
diversity within any given individual (or alpha diversity) (30). The oral community is
frequently dominated by members of the genus Streptococcus but also contains
Prevotella, Veillonella, Haemophilus, Neisseria, Corynebacterium, Actinomyces, and Rothia,
among others; it may also contain archaea, including Methanobrevibacter (1, 27, 66).
However, like the gastrointestinal tract, there are several distinct regions within the
mouth, including the gingiva, tongue, and teeth, that harbor somewhat distinct
communities (27, 66). Similarly, the skin does not harbor a single unified bacterial
community, and the composition depends on the characteristics of the site sampled,
for example, dry skin, oily (sebaceous) skin, or moist skin (1, 27, 67–69). In contrast to
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the gut, the skin is dominated by Actinobacteria, followed by Firmicutes, Proteobacteria,
and Bacteroidetes; common genera include Staphylococcus, Propionibacterium, and
Corynebacterium (1, 27, 68–70). In particular, the lipophilic genus Propionibacterium is
associated with sebaceous sites (68–70). Additionally, the skin is colonized by the
Thaumarchaeota phylum of archaea, possibly involved in ammonia oxidation (14,
71–73). Finally, the vaginal bacterial community is an interesting demonstration of the
fact that grouping bacteria at higher taxonomic levels can hide the diversity at lower
levels. The vaginal community in most individuals is dominated by the genus Lacto-
bacillus, giving it an apparent low diversity at this level, but the species and strains
present are diverse and variable (27). However, recent work has also revealed that a
significant subset of individuals possess a more diverse vaginal bacterial microbiota,
including Gardnerella, Atopobium, Megasphaera, Streptococcus, and Prevotella (74, 75).

Mutualistic Metabolism: Gut Microbes in the Digestive Tract

As might be expected given their residence in the gastrointestinal tract, the gut
bacterial and archaeal microbiota play an important role in digestion and metabolism.
Collectively, gut bacteria possess the ability to extract energy from a wide variety of
molecules that are indigestible by the host alone. Generally, these molecules are
plant-derived polysaccharides, including fibers and starches, which are broken down
into metabolites that can be used by the host or other microbes (76–78). Indeed,
metatranscriptomics studies indicate that carbohydrate transport and metabolism are
highly expressed functions across individual microbiomes, despite taxonomic variation
(79). The importance of including such molecules in the diet is highlighted by studies
that suggest that in their absence, gut microbes may instead overdigest the mucus
layer, potentially allowing epithelial access to pathobionts (80–82). Additionally, non-
fermentative members of the microbiota may form cooperative metabolic networks
with the fermenters; for example, methanogenic archaea in the gut remove excess
hydrogen from the local environment, driving fermentation by increasing the thermo-
dynamic efficiency of the process (52, 53). In fact, metatranscriptomics studies have
indicated that methanogens are particularly active relative to some other members of
the gut microbiota (31).

The importance of the gut microbiota in harvesting energy from food can be
demonstrated by studies in germfree animals, which lack any microbiota and display
metabolic differences from their conventionally raised counterparts. Germfree mice are
leaner than conventional mice despite consuming more food on a standard diet, but
they lose this phenotype when they are colonized with the gut microbes of their
conventional counterparts (83, 84). This effect arises from the reduced capacity of
germfree mice to extract energy from food, thereby decreasing the caloric intake from
the same amount of food, as well as the ability of the gut bacteria to promote fat
deposition by the host (84). Another study found that when on a high-fat diet, germfree
mice actually consumed less food than conventional mice, while also displaying
increased lipid excretion and less-efficient food utilization. Together, these effects
resulted in lower weight gain than in conventional mice, suggesting a degree of
resistance to the ill effects of the high-fat diet (85). Recent work further confirms this
observation, as germfree mice on a high-fat diet were shown to gain less weight,
deposit less epididymal and mesenteric fat, excrete more triglycerides in the stool, and
absorb significantly less lipid into the bloodstream than conventional mice; together,
these data suggest that gut microbes play an important role in lipid digestion and
absorption (86, 87).

Further studies have demonstrated that not all microbiomes are equal. For example,
the bacterial microbiota of genetically obese mice have been shown to be more
efficient at extracting dietary energy than those of their lean littermates. Obese mice
showed an enrichment in bacterial genes for indigestible polysaccharide breakdown,
produced more short-chain fatty acids (SCFA), and had lower fecal energy content,
suggesting a greater ability to extract energy from their food. Furthermore, transferring
microbiota from an obese mouse to a germfree mouse resulted in a significantly larger

Rowan-Nash et al. Microbiology and Molecular Biology Reviews

March 2019 Volume 83 Issue 1 e00044-18 mmbr.asm.org 6

https://mmbr.asm.org


body fat percentage increase than transferring microbes from a lean mouse (88). In fact,
transplanting fecal microbiota from humans has a similar effect; mice given microbiota
from an obese human gained more weight and fat than mice given microbiota from the
donor’s lean twin (89). Interestingly, cohousing both types of mice together led the
obese-transplant mice to resemble their lean-transplant counterparts in both bacterial
microbiota and body composition, suggesting that the low-fat, high-fiber diet that the
mice were provided with selected for the lean-associated microbes (89).

In fact, it is widely recognized that diet is a major factor that influences the makeup
and function of the gut microbiota. For example, researchers comparing the gut
bacterial microbiota of children in urban Italy and rural Burkina Faso found dramatic
differences, including a high prevalence of fiber-digesting taxa and a significantly
reduced Firmicutes-to-Bacteroidetes ratio in the African children compared with their
European counterparts. Those authors attribute these differences to the high-fiber,
low-animal-protein diet of the African cohort, which promotes the growth of bacterial
taxa capable of digesting dietary fibers and starches (90). More experimental studies
have further demonstrated the importance of diet in the makeup of the gut microbiota.
One study found that a high-fat diet led to a reduction in the abundance of Bacte-
roidetes and increases in the abundances of Firmicutes and Proteobacteria, even in an
obesity-resistant mouse model (91), while another found that weight loss in obese
humans was associated with increases in the abundances of Bacteroidetes (92). Diet may
also interact with microbes in the small intestine to regulate lipid absorption; recent
work has found that colonizing germfree mice with jejunal microbiota from mice fed a
high-fat diet increases their capacity for lipid absorption even on a low-fat diet, while
transferring microbes from mice fed a low-fat diet did not have the same effect (87).
Strikingly, Turnbaugh et al. found that switching mice from a low-fat, plant-rich diet to
a high-fat, high-sugar diet could change microbial composition and metabolism in as
little as a day (93), and the same group demonstrated alterations to the human gut
microbiota after only 4 days on a plant-based or animal-based diet (94). As such, there
is significant research interest in the microbial contributions to obesity and metabolic
disorders, as well as in whether the gut microbiota present a therapeutic target to treat
or prevent these conditions. However, these efforts have been generally complicated
by conflicting results and difficulty in finding a consistent signature of metabolic
disruption across experiments (95, 96).

In addition to simply liberating more energy from the diet, gut bacteria produce
important metabolites that may promote host health. Many gut bacteria produce
vitamins, particularly vitamin K and several B vitamins, although the amount absorbed
by the host relative to the microbiota is unclear. More importantly, many of the
gut-resident bacteria produce SCFA, primarily butyrate, acetate, and propionate, as end
products of fermentation of undigested fiber, starches, and plant polysaccharides in the
colon; in contrast, branched-chain fatty acids, including isobutyrate, methylbutyrate,
and isovalerate, can also be produced as amino acid metabolism by-products (77).
Acetate is produced by many enteric microbes, including the mucolytic A. muciniphila,
Bacteroides species, and Bifidobacterium species. It enters peripheral circulation and is
the primary SCFA detectable in blood, and some functions include serving as a fuel
source for the liver and muscles and being used in the synthesis of molecules such as
cholesterol (77, 97). Acetate can also be used by other gut microbes to produce
butyrate (77). Propionate, produced by microbes including members of Bacteroidetes
and the Negativicutes class of Firmicutes, is almost wholly metabolized in the liver and
has impacts on gluconeogenesis (77, 97). Butyrate, which has received a significant
amount of research interest, is primarily produced by members of Firmicutes, such as
Faecalibacterium prausnitzii. It is the primary fuel source for the colonic epithelium and
has been implicated as an anti-inflammatory influence that helps to maintain intestinal
homeostasis (97, 98). The concentrations of SCFA decline along the length of the colon,
reaching 70 to 140 mM in the proximal colon and 20 to 70 mM in the distal colon, and
SCFA also form a concentration gradient from the lumen outwards; furthermore, they
are present at different molar ratios, with acetate being the most abundant, followed
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by butyrate and propionate at approximately similar fecal levels, although this likely
does not accurately represent the ratios in the colon itself due to differences in
absorption (77, 96, 97, 99, 100). In addition to their role in host metabolism, SCFA are
implicated as important signaling molecules mediating interactions between the gut
bacteria and the host immune system, as described in more detail below.

Immunomodulation and Bacterial “Old Friends”

In addition to their role in metabolism, the human microbiota play an important role
in the immunity of the host, which must be able to differentiate between commensal
and/or symbiotic microbes and potentially pathogenic bacteria. Therefore, there is an
important balance that develops, involving a limitation of contact between the micro-
biota and the local mucosa in addition to immunoregulatory mechanisms, allowing
beneficial microbes to persist while preventing autoimmunity or self-damage by the
host. The contributions of commensal microbes to immunoregulation form an impor-
tant part of the “old friends” (formerly “hygiene”) hypothesis (101–105). In short, this
hypothesis posits that changes that have occurred in developed nations, including
water sanitation, increased usage of antibiotics, higher rates of caesarean sections,
more time indoors, and shifts to a low-fiber Western diet, have reduced early-life
exposure to and colonization with helminths and beneficial microbes (old friends that
humans coevolved with) that help to regulate the immune system, thereby leading to
increases in autoimmune and allergic disorders in their absence (101–105). Here, we
focus on the bacterial component of this hypothesis, but we discuss the contributions
of helminths in a later section.

Humans are colonized with commensal microbes during and shortly after birth and
must develop an immune system that can tolerate bacteria at many body sites without
losing the ability to defend against pathogens. According to the old friends hypothesis,
if there is insufficient exposure to diverse commensal or environmental microbes, it can
lead to a failure to properly train immunological tolerance to harmless stimuli and
subsequent overreactions to allergens or innocuous microbes. At the same time, many
beneficial commensal microbes actively regulate the immune response, helping to
prevent inappropriate immune activation to both the microbes themselves and other
“bystander” antigens (101, 106, 107). Without this influence, particularly in early child-
hood, the risk for diseases of immune hyperreactivity, such as asthma, type 1 diabetes,
multiple sclerosis, and inflammatory bowel disease (IBD), increases. In fact, adults who
immigrate from low- or middle-income nations to high-income nations tend to retain
protection against such disorders, but their children or those who immigrate when very
young develop these diseases at higher rates more similar to those of indigenes of the
new country (104, 108–114).

There are several mechanisms by which key members of the commensal microbiota
modulate the immune response. First, the mere presence of gut microbiota is required
for proper immune development; studies in germfree mice have revealed a number of
immunological irregularities. For example, the microbiota are important for the devel-
opment of the gut-associated lymphoid tissue (GALT), which allows the uptake and
presentation of gut antigens to local immune cells. Accordingly, germfree mice have
underdeveloped GALT compared to conventional animals. Specifically, they have small
Peyer’s patches with fewer germinal centers, reduced numbers of CD4� T cells in the
lamina propria, and low levels of secretory IgA-producing plasma cells (115–118). They
also show signs of a TH2-biased immune system, even in peripheral locations such as
the spleen, and a decreased ability to develop oral tolerance to ingested antigens
(119–123). They also have increased accumulation of invariant natural killer cells in the
colonic lamina propria, although they may be hyporesponsive (124, 125). Generally,
such defects can be corrected by colonization with microbes at an early age, but not
always in adulthood, supporting the importance of an early-life “critical window” for the
microbiota to stimulate normal immune development (125–127). Even certain single
species of bacteria can serve to normalize some aspects of immune function in
germfree mice; for example, Bacteroides fragilis monocolonization can correct TH2 bias
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and promote immunological balance (123), Bifidobacterium infantis can correct oral
tolerance defects when administered to neonatal mice (128), and SFB (a lineage within
the family Clostridiaceae) can direct balanced T-cell maturation comparable to that of
a complete mouse microbiota (129).

The presence of the microbes is also important to the “education” of the adaptive
immune system, training it to discriminate between innocuous commensals and harm-
ful pathogens and thereby promoting tolerance of microbiota-derived antigens. A key
component of this process is the development of forkhead box P3� (FoxP3�) regula-
tory T cells (Treg cells), which can suppress effector CD4� T-cell subsets and thereby
promote immune tolerance. Traditional Treg cells arise from the thymus, with the
objective of suppressing self-reactivity by the immune system (130–132); while these
thymic cells (tTreg cells) play a role in intestinal homeostasis, there is also an important
role for naive T cells recognizing commensal antigens that are induced to differentiate
into Treg cells in the colon (iTreg cells) (126, 133–136). This occurs in part through the
action of tolerogenic CD103� dendritic cells in the epithelium, which preferentially
sample the luminal bacteria and favor the differentiation of naive CD4� cells into iTreg

cells (137–141). As might be expected, germfree mice can display defects in their Treg

populations, although they do not lack them entirely (142, 143). The presence of
colonic iTreg cells with a diverse repertoire of receptors recognizing commensal anti-
gens helps to prevent inappropriate responses to the microbiota and other bystander
antigens, which have been implicated in the pathogenesis of IBD (144–146). This is
thought to be particularly important during early life; the microbiota of humans is
temporally unstable for the first several years and is theorized to provide a sampling
window for the training and development of immunoregulatory responses (122, 144–
146).

In addition to simply serving to educate the adaptive immune system, several types
of commensal microbes have been found to actually direct certain immune responses,
often promoting tolerance (147, 148). For example, the common gut microbe B. fragilis
(of the phylum Bacteroidetes) has been found to activate development of Treg cells and
increase immunoregulatory cytokine production via the molecule polysaccharide A
(PSA) (149–151). Accordingly, this molecule has been found to be protective against
certain inflammatory diseases in mouse models (149–151). The related species B.
thetaiotaomicron may be able to downregulate intestinal inflammation, even in the face
of inflammatory challenge, by repressing host NF-�B signaling (152, 153); some other
microbes, including Lactobacillus species and nonvirulent Salmonella strains, have
demonstrated similar capabilities (153, 154). In addition, members of the class Clostridia
(of the phylum Firmicutes) can induce the expansion of thymic Treg cells and the
development of colonic Treg cells; this effect is at least partially mediated by the
production of SCFA, particularly butyrate (140, 155–160). Specifically, the species F.
prausnitzii has been found to be anti-inflammatory at least in part via its production of
butyrate, inducing Treg cells and anti-inflammatory cytokine production. Accordingly, it
has been suggested to be protective against the development of IBD (161–163).
Furthermore, colonization with altered Schaedler flora, a defined mix of eight com-
mensal bacterial species that robustly colonize mice, including Lactobacillus, Clostrid-
ium, and Bacteroides species, has been shown to increase the levels of Treg cells in the
colonic lamina propria and promote intestinal immune homeostasis (164, 165). Finally,
some Lactobacillus species have demonstrated an ability to drive Treg development and
subsequent interleukin-10 (IL-10) production (166). Contrarily, SFB have been found to
associate closely with the mucosa and induce a TH17 response; the TH17 response is a
generally proinflammatory pathway that can help to protect against bacterial patho-
gens but potentially contribute to autoimmune pathology (60, 148, 167).

The commensal bacterial microbiota also promote the function of the gut epithelial
barrier, the integrity of which is important for preventing inappropriate immune
activation and invasion by pathogens. A barrier of mucus, antimicrobial peptides, and
secretory IgA serves to keep most microbes at a safe distance (168–173), although some
are able to come into fairly close contact with the epithelium (61, 174). The commensal

Cross-Domain Interactions in the Microbiome Microbiology and Molecular Biology Reviews

March 2019 Volume 83 Issue 1 e00044-18 mmbr.asm.org 9

https://mmbr.asm.org


microbiota appear to serve as a stimulus for increased mucus production, as germfree
animals have been observed to have impaired mucus production, which can be rescued
via colonization with a normal microbiota or even administration of bacterial products,
including lipopolysaccharide (LPS) (56, 175–178). The production of butyrate may
contribute to this effect, as it has been demonstrated to promote epithelial production
of the major mucus component mucin-2 (33, 179–181). Butyrate can also promote
epithelial barrier function and integrity (182–184). Additionally, gut bacteria may
stimulate the production of IgA and antimicrobial peptides (120). While some of these
impacts may seem counterproductive to the gut bacteria, they ultimately help both
host and microbiota by maintaining a tolerant, anti-inflammatory environment. Fur-
thermore, some commensal bacteria may be able to use host immune factors such as
IgA to aid them in stable gut colonization (185).

Finally, commensal bacteria and archaea provide resistance to host infection with
pathogens, a phenomenon termed colonization resistance. Commensal microbes oc-
cupy the readily available niches of the sites that they colonize and stimulate the local
immune system, preventing potential pathogens from effectively establishing infec-
tions. They can compete for nutrients, produce antibacterial or inhibitory molecules, or
even kill other bacteria through type VI secretion systems; in contrast, commensal
bacteria can also indirectly encourage resistance to pathogenic infection by promoting
antimicrobial peptide production, epithelial barrier integrity, and TH17 responses, as
described above. In one example of such immune-mediated competition, the Gram-
negative organism B. thetaiotaomicron can stimulate the production of the antimicro-
bial peptide RegIII�, which primarily acts against Gram-positive bacteria (174, 186, 187).
Additionally, some interactions require a combination of interbacterial competition and
host immune involvement; the probiotic Escherichia coli strain Nissle 1917 can antag-
onize Salmonella enterica colonization by competing for iron, but only when the host
produces the innate immune molecule lipocalin-2 to limit bacterial iron availability
(188). As might be expected, germfree mice or antibiotic-treated mice or humans are
more susceptible to colonization with certain pathogens, including S. enterica, Clostrid-
ium difficile, Klebsiella pneumoniae, and pathogenic E. coli (174, 189).

Given the importance of the commensal bacterial microbiota to immune regulation
and colonization resistance, there is interest in using probiotics (specific strains or
cocktails of bacterial species) and/or prebiotics (food or nutrients, typically fibers, meant
to foster the growth of beneficial bacteria) as therapeutic agents. Of greatest interest
are lactic acid bacteria, which are generally well tolerated by humans and are often
present in fermented foods. Lactobacillus and Bifidobacterium species are most com-
monly studied, although some other microbes, including Streptococcus, Lactococcus,
Enterococcus, and E. coli Nissle 1917, have been studied as well (190). Both mouse and
human studies have examined the potential for probiotics, sometimes in combination
with prebiotics, to prevent or alleviate a wide variety of disorders, including antibiotic-
related C. difficile infection, IBD, H. pylori infection, atopic disorders, and necrotizing
enterocolitis in preterm infants, among others (191–194). In this work are potentially
promising results, although many studies are of a small size or have methodological
limitations, so it is difficult to draw robust conclusions in some cases. However, large
and well-designed studies can demonstrate the potential of pre- and probiotics; for
example, Panigrahi et al. included over 4,000 subjects in a randomized, double-blind,
placebo-controlled study of a combined pre- and probiotic (“synbiotic”) that showed a
reduced risk of sepsis in full-term infants in rural India (195).

Summary

The bacterial and archaeal microbiota, particularly within the gastrointestinal tract,
perform a number of important functions beneficial to the eukaryotic host. Most
directly, they play a major role in digestion, allowing the host to extract energy from
dietary components that the host does not possess the capacity to break down. In
doing so, the gut microbiota produces SCFA, including butyrate, which serves as a
primary fuel source for the colonic epithelium. Furthermore, the microbiota and their
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metabolites have significant impacts on the development and function of the host
immune system. They stimulate innate mechanisms to shield the gut epithelium,
protect the host against pathogenic colonization, and direct adaptive immune cell
populations, particularly TH17 and Treg cells; in fact, the lack of a diverse community in
early life may contribute to the development of immunological disorders in the
genetically susceptible. In return, the eukaryotic host provides its microbial passengers
with a sheltered niche and an array of nutrients, maintaining a tolerant environment
despite the huge numbers of nonself organisms found in and on its body.

FUNGI AND OTHER UNICELLULAR EUKARYOTES

While the vast majority of human microbiome sequencing to date has been per-
formed on bacteria, interest in the fungal component, the “mycobiome,” has been
growing. Fungi are a normal part of human microbial communities, found alongside
bacteria in the skin, oral, gut, and vaginal microbiomes, and can interact with the
resident bacteria in both mutualistic and antagonistic ways. In terms of cell numbers,
fungi are a much smaller component of the microbiota than bacteria by orders of
magnitude, although fungal cells are generally much larger than their bacterial neigh-
bors (33, 196). In addition, humans may become infected with a number of nonfungal
unicellular eukaryotes, including amoebozoans, heterokonts, metamonads, trypanoso-
matids, and apicomplexans.

Like bacteria, the fungi of the microbiome can be studied via either metagenomics
or amplicon sequencing; the internal transcribed spacers (ITSs) between either the 18S
and 5.8S rRNA genes (ITS1) or the 5.8S and 28S rRNA genes (ITS2) are typically the
markers of choice, although sometimes the 18S gene itself is used (196–199). However,
these types of analysis are more difficult for fungi than for bacteria, in large part due
to the comparatively underdeveloped databases for fungal genomes. These databases
are less complete, less accurate, and less well annotated than those for bacteria; in
particular, the sexual (teleomorph) and asexual (anamorph) phases of some fungi may
be classified as separate species despite identical genomes (200). Regardless, significant
progress is being made to characterize the normal or “core” mycobiome, to associate
fungal taxa with various disorders, and to understand how fungi interact with their
bacterial neighbors across host colonization sites (196, 201).

Members of the Mycobiome

Primarily using ITS sequencing, there have been a number of studies attempting to
catalogue the resident gastrointestinal fungi and determine the composition of a core
healthy mycobiome (Fig. 1). ITS sequencing of human feces has had somewhat variable
results, although they generally support the conclusion that the gut mycobiome has
relatively low diversity and varies significantly between individuals. In contrast to
observations of the bacterial gut residents, the number of fungal operational taxo-
nomic units (OTUs) detected pales in comparison to those seen for bacteria, and
longitudinal sampling from the same individual over time indicates that the detectable
fungi fluctuate significantly. This observation is supported by data from mice, which
also have longitudinally variable gut mycobiota despite living under controlled condi-
tions (202, 203).

Despite this, ITS sequencing studies have identified various fungal genera associated
with the human gut. Most studies indicate that the healthy human gut contains
Candida and Saccharomyces species, with other frequently detected taxa including
Malassezia, Debaryomyces, Cladosporium, Aspergillus, Pichia, and Alternaria, among
others (202, 204–206). There is also some research into gut-resident fungi in the context
of human disease, and there is evidence that Candida itself and fungus-associated
antibodies may be related to IBD. Specifically, anti-Saccharomyces cerevisiae antibodies
(ASCA), which, despite the specificity of their name, can recognize antigens from other
yeasts, including Candida, have been associated with IBD (207–210).

One issue is that there is significant variability between studies, in both the specific
taxa detected and their relative abundances. Differential DNA extraction protocols,
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marker genes, primers chosen, analysis techniques, and sample populations may be to
blame, in addition to inherent mycobiome variability. An issue acknowledged by many
authors is that it is difficult to differentiate true gut colonizers from food-associated and
environmental fungi that may simply pass through; this could potentially help to
explain the high variability in fungal composition over time, as it may be influenced by
recent diet and environmental exposures (202, 204). For example, while Saccharomyces
is frequently found in the fecal mycobiota, S. cerevisiae, known more commonly as
baker’s or brewer’s yeast, is used in the production of bread and beer and may present
a confounding influence on analysis. The variable and uncontrolled diet of human
subjects makes this a difficult question to answer. However, the studies that have been
performed suggest that while dietary fungi can be detected at appreciable levels in the
fecal mycobiome, they may be metabolically active while in the gut and therefore
contributing to the local community, even if transiently (94).

There are also a number of fungi found in the human oral cavity, both on the
mucosal surfaces and in subgingival plaque (199). A few groups have used ITS sequenc-
ing in humans to identify potential members of a core oral mycobiome, including
Candida, Cladosporium, Alternaria, Aspergillus, Fusarium, Cryptococcus, and Aureobasi-
dium (211–213). Unsurprisingly, those studies found that Candida was particularly
common, reflecting previous results from culture-based studies (211). Ghannoum et al.
also identified Saccharomycetales, Dothioraceae, Teratosphaeria, and Glomus as com-
monly occurring mycobiome members, while Dupuy et al. identified Malassezia, Irpex,
Cytospora, Lenzites, and Sporobolomyces (212, 213). As in the gut mycobiome, differ-
ences in core taxa identified may be attributable to study populations, sampling type,
extraction of fungal DNA, and methods of filtering and analysis, which were somewhat
different between the two studies. Furthermore, food-associated and environmental
contaminations are difficult to rule out. Finally, Ghannoum et al. were able to use
community-level analysis to determine that subjects’ gender and ethnicity were asso-
ciated with their mycobiota, with analysis indicating significant differences between
samples from females, white males, and Asian males (213).

Fungi have also been identified on the skin, particularly the lipophilic yeast genus
Malassezia (200, 214, 215). A comprehensive survey of the skin mycobiota sampled and
analyzed the fungi at 14 skin sites of healthy adults (216). Most were dominated by
Malassezia, with species differing between sites, although three foot-based sites
showed a greater diversity of fungal genera including Aspergillus, Cryptococcus, Rho-
dotorula, and Epicoccum (216). Similarly, another group found that Malassezia species
dominate much of the skin mycobiota, while other genera, including Candida,
Meyerozyma, Rhodotorula, Trichosporon, Cladosporium, Aureobasidium, and Alternaria,
could also be identified (217). Furthermore, another study demonstrated a similar
composition of skin mycobiota in a non-Western population; samples from Chinese
participants in Hong Kong were dominated by Malassezia at multiple sites, with other
commonly occurring genera including Aspergillus, Penicillium, Candida, and Cryptococ-
cus (218). Finally, recent work found that the skin mycobiome of children is more
diverse and variable between individuals and that the domination by Malassezia
becomes established by adulthood, potentially due to the activation of sebaceous
glands that occurs during puberty (219, 220). There may also be some differences in
facial carriage of Malassezia by gender, with women harboring fewer fungi, although
this has been suggested to be attributable to the use of cosmetics rather than inherent
differences between men and women (220–222).

When discussing the presence of fungi in the female reproductive system, much of
the focus has been on vulvovaginal candidiasis, or “yeast infections.” However, the
vagina may be colonized by a number of fungi, and opportunistic pathogens such as
Candida colonize many women asymptomatically in the absence of an immune or
vaginal bacteriome disruption (223, 224). In fact, Candida has been found in multiple
studies to be the most frequent colonizer of the vaginal mycobiota, even in healthy
individuals. In a study using an 18S rRNA gene clone library to identify fungal taxa in
the vaginal microbiota, researchers identified a number of fungal OTUs, including
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Candida, Saccharomyces, Dothideomycetes, and Paecilomyces species, in healthy sub-
jects (225). More recently, researchers used ITS sequencing in a large study of healthy
women. They found that Candida species were the most prevalent, being present in
64.5% of subjects and having a mean relative abundance of 36.9% (226). In addition,
they identified OTUs mapping to Cladosporium, Eurotium, and Alternaria present at low
abundances, although their analysis was complicated by a large number of unspecified
OTUs, which had a summarized relative abundance of 38.6% (226).

In general, work on the human mycobiome has been minimal in comparison to
interest in the bacteriome. Much is still unknown regarding the “core” or healthy
members of the fungal microbiota at various body sites, although it is clear that
Candida species are commonly found across multiple mucosal body sites while
Malassezia dominates much of the skin. Interestingly, studies identified the presence of
several potentially pathogenic fungal genera, including Aspergillus, Fusarium, and
Cryptococcus, suggesting that, like Candida, these taxa may be commonly present in
healthy individuals without immune dysfunction. Authors of the studies discussed here
are in general agreement that more work is required and that a number of steps should
be taken to improve comparability between studies and increase the level of detail that
can be obtained from sequencing. Similar to calls in the field of the bacteriome, a
unified process for sample collection, DNA extraction, amplicon generation, marker
gene sequencing, and sequence analysis has been identified as being potentially
helpful in making comparisons between different studies. Particularly with regard to
the oral and gut mycobiota, additional steps to minimize the influence of food-
associated, noncolonizing fungi, such as sampling from mucosa rather than feces or
saliva, may help to accurately assess the truly resident fungal taxa. Additionally,
improved scope, accuracy, and curation of fungal sequence databases will be important
to increase the number of OTUs that can be mapped to specific taxa, to decrease the
number of potentially spurious results matching sequencing artifacts, and to prevent
the classification of the same sequences with taxonomic names pertaining to different
sexual states. In pursuit of this goal, Tang et al. recently developed the Targeted
Host-Associated Fungi (THF) database, which has been curated and optimized for
identification of human and murine gastrointestinal fungi using ITS1 sequencing, in an
effort to improve future surveys of the mycobiome (227).

Given that fungi colonizing the human body cohabitate with the bacterial members
of the microbiota, there is significant interest in how these species cooperate and
compete in their shared niches. A significant proportion of existing work examines
interactions between various bacterial species and Candida species, which have long
been known to colonize the human host at multiple sites and to act as opportunistic
pathogens under certain circumstances, making them a clear clinical and research
priority. Existing research has revealed a diverse array of interactions, including com-
petition, antagonism, growth enhancement, synergistic virulence, and others (Fig. 2).
These interactions are frequently mediated by quorum-sensing molecules from both
kingdoms and in some cases are dependent on the context or growth state of the
organisms, including in vivo versus in vitro, in suspension versus in biofilm, or yeast cells
versus hyphae.

Candida, Lactobacilli, and Colonization Resistance

Candida species are found as commensal organisms in the microbial communities of
a large proportion of the human population, but their growth is typically limited by
competition with other microorganisms and by the host immune system. When this
dynamic, a form of colonization resistance, is disrupted, such as by antibiotic admin-
istration or immunosuppressive disorders or therapies, Candida species can bloom and
cause local infections, including oropharyngeal, vulvovaginal, and cutaneous candidi-
asis or even the systemic infection candidemia (228). This is commonly characterized by
a transition from yeast to hyphal growth, allowing the fungus to become invasive and
damaging to tissues (228, 229). The host microbiota plays an important role in keeping
this opportunistic pathogen in check, competing with it and inhibiting its expansion in
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a healthy microbiome. For example, laboratory rodents are not typically colonized by
Candida albicans, but they become susceptible if raised under germfree conditions
where they have no resident microbial community or if treated with broad-spectrum
antibiotics that reduce the density and diversity of their native bacterial flora (203, 230).

While colonization resistance is mediated by a range of species inhabiting the host,
bacteria of the genus Lactobacillus are particularly known for their antagonistic rela-
tionship with Candida species, especially in the vaginal microbiota, where Lactobacillus
species frequently dominate (Fig. 2) (196, 231–233). Early studies showed that Lacto-
bacillus was capable of displacing Candida from stomach epithelia in a murine model
(234), and more recent work has shown that certain Lactobacillus species can interfere
with Candida adhesion to vaginal epithelial cells via exclusion, competition, and
displacement (235, 236). Some of this effect may be mediated by exopolysaccharide
produced by some Lactobacillus species, which is structurally similar to that of C.
albicans and is itself sufficient to antagonize Candida colonization via exclusion (235).

On a molecular level, there are a number of mechanisms by which lactobacilli can
negatively impact the growth of Candida. A range of Lactobacillus species and their
supernatants can inhibit growth, hyphal morphogenesis, and biofilm development
(237). Lactobacillus rhamnosus can antagonize virulence factor production, biofilm
capacity, and antifungal tolerance in a mixed biofilm with C. albicans, while lactobacilli
more generally can compete with Candida for nutrients, particularly glucose (238, 239).
Some species of Lactobacillus produce molecules toxic to Candida, including bacterio-
cins, biosurfactants, and hydrogen peroxide, which may help to antagonize Candida
growth in shared environments (240–242). Additionally, while their name derives from
their production of lactic acid, many lactobacilli also produce SCFA such as butyrate or
acetate. This may contribute to the acidification of their environment, dampening the
ability of Candida to grow or to undergo transition to the invasive hyphal phenotype
(243); in addition, lactic, butyric, and acetic acids have been shown to have direct
toxicity against C. albicans (244–246).

Lactobacilli may also interact with the host to improve defenses against Candida
overgrowth or inflammatory damage. Lactobacillus species may benefit epithelial bar-

FIG 2 Outline of significant interactions between various human-associated bacteria and the fungus Candida
albicans, ranging from cooperation to antagonism. abx, antibiotics.
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rier integrity, including via impacts on mucus production and modification and on
intercellular junctions (179, 247–251). They or the SCFA that they produce may also
stimulate the production of antimicrobial peptides lethal to Candida, such as defensins
or cathelicidin (235), as well as modulate the expression or activity of mucosal Toll-like
receptors (TLRs) (252). Finally, lactobacilli may help to reduce inflammation resulting
from Candida activity, as SCFA are known for their anti-inflammatory properties, and
some species of Lactobacillus have been shown to promote regulatory T-cell differen-
tiation (253).

It should be noted that many of these mechanisms are shared by other members of
the native microbiota, and other bacteria contribute to colonization resistance, espe-
cially in the gut, where Lactobacillus makes up a relatively small proportion of the total
flora (254). For example, SCFA are produced by other gut microflora, and species such
as B. thetaiotaomicron and Blautia producta have been shown to confer colonization
resistance to C. albicans in the mouse gut (255, 256). Additionally, the ability to
antagonize Candida growth and colonization is likely species or even strain specific;
some Lactobacillus species have demonstrated strong anti-Candida activity in a number
of studies, while others have shown little or a lesser effect (237, 240, 242). As such, there
has been significant research interest in identifying potentially probiotic strains of
Lactobacillus, commonly including the species L. plantarum, L. crispatus, and L. rham-
nosus, that may be useful in promoting resistance to Candida overgrowth in vulnerable
populations (257–262).

However, the interaction between these two groups may not be entirely one-sided,
and Candida may also be able to antagonize the growth of Lactobacillus in mixed
communities. Most directly, one group found that C. albicans produces a quorum-
sensing molecule, farnesol, that may interfere with membrane integrity in L. fermentum
and potentially other lactobacilli (263). Another group analyzed the ability of multiple
C. albicans secreted aspartate proteases (SAP) to generate antimicrobial peptides from
hemoglobin, or hemocidins (264). Many of the tested SAP generated a wide range of
these peptides, and these hemocidins demonstrated significant antimicrobial activity
against L. acidophilus, a component of the human vaginal microflora (264). Given the
presence of hemocidins as a major component of human menstrual discharge, those
authors speculate that Candida may be able to regulate the bacterial composition of
the microbiota in this niche via the production of these antimicrobial peptides from
host hemoglobin (264, 265). In the gut, researchers found that inhibition of dectin-1
signaling, a C-type lectin pathway through which the host recognizes beta-glucans
(components of the fungal cell wall), led to an expansion of L. murinus in a mouse
model (253). Furthermore, they demonstrated that the lack of dectin-1 signaling led to
a significant reduction in intestinal levels of antimicrobial peptides that suppress L.
murinus growth. While researchers could not detect viable fungi in the specific-
pathogen-free mouse hosts and speculated that dectin-1 was activated by food beta-
glucan ligands, this study raises the possibility that gut-resident Candida or other fungi
may provoke host responses that antagonize lactobacilli (253).

Researchers have also found that colonization with C. albicans after antibiotic
administration altered the recovery of the digestive tract bacterial population in mice,
enhancing the recovery of Bacteroidetes and biasing the recovery of lactic acid bacteria
toward Enterococcus faecalis instead of Lactobacillus species (266, 267). Importantly, this
could occur in the context of nonpathogenic colonization, indicating that even in the
absence of overt invasive disease, the presence of Candida may be able to influence the
bacterial makeup of the microbiome. Interestingly, E. faecalis has previously been linked
with Candida, as they are frequently isolated together from nosocomial infections and
E. faecalis may even be enriched in clinical samples containing Candida species (268–
271). Additionally, researchers found that in a nematode model of polymicrobial
infections, coinfection with C. albicans and E. faecalis led to reduced virulence, in-
creased host survival, and decreased hyphal morphogenesis, suggesting that the two
may together promote a commensal rather than an invasive lifestyle (272). The reduc-
tion in hypha formation was partially mediated by the E. faecalis quorum-sensing
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virulence regulator Fsr, one of many examples of quorum-sensing systems involved in
mediating fungus-bacterium interactions; the bacteriocin EntV also appears to play an
important role, reducing hyphal morphogenesis in both in vitro and in vivo models (272,
273).

Competition and Antagonism between Fungal and Bacterial Pathogens

While host-associated Candida will most frequently encounter the commensal
microflora, as discussed above, it may also interact with bacterial pathogens. Given the
potential for coinfections, there has been significant research interest in understanding
the relationship between Candida and such bacteria. In many cases, including interac-
tions with Pseudomonas aeruginosa, E. coli, Acinetobacter baumannii, and S. enterica,
there is evidence of antagonistic relationships, particularly in a coculture setting (274).
Frequently, the antagonism is mutual, with both bacteria and fungi inhibiting the
growth or function of the other.

P. aeruginosa, a Gram-negative opportunistic pathogen of significant clinical impor-
tance due to high prevalence of antibiotic resistance and frequent implication in
nosocomial infections, has multiple mechanisms of antagonizing C. albicans when the
two are grown together (Fig. 2). For example, P. aeruginosa inhibits Candida hyphal
morphogenesis in vitro via secretion of a homoserine lactone (HSL) quorum-sensing
molecule. HSL resembles the Candida quorum-sensing molecule farnesol, which is used
by the fungus to limit its own hyphal growth at high cell densities and has been shown
to negatively impact membrane integrity in some bacterial species (263, 275, 276). A
similar effect has been observed in another Gram-negative pathogen, Burkholderia
cenocepacia, which also produces a farnesol-like signaling molecule that inhibits hyphal
morphogenesis in Candida (277). Additionally, P. aeruginosa forms biofilms on C.
albicans hyphae, which can lead to hyphal death through bacterial production of the
virulence factors phospholipase C and phenazines (278, 279). Even at lower, nonlethal
concentrations, phenazines can inhibit hyphal morphogenesis and biofilm formation
(280). The farnesol produced by C. albicans, in turn, interferes with the production of
the Pseudomonas quinolone signal (PQS) that regulates the production of phenazines
such as pyocyanin, which may serve to help protect C. albicans from toxic effects of P.
aeruginosa (281). Contrarily, the same group showed that farnesol could actually lead
to the activation of downstream genes such as phenazines in strains of P. aeruginosa
lacking the ability to produce PQS (282). Finally, P. aeruginosa may also be able to
inhibit the growth of other fungi, including Aspergillus fumigatus, Scedosporium auran-
tiacum, and Lomentospora prolificans, although whether this occurs via the same
mechanisms as its interactions with Candida is unclear (283, 284).

Similarly, there is evidence that E. coli, which is typically a human commensal but
can cause disease with the acquisition of certain virulence factors, can negatively
impact the growth of C. albicans (Fig. 2). Early studies indicated that E. coli could kill C.
albicans when cocultured, an effect that was not observed when using heat-killed E. coli
(285). Similarly, some clinical isolates of E. coli could inhibit the growth of C. albicans
both in culture and in a gnotobiotic mouse model, and this effect could be traced to
a diffusible factor produced by the inhibitory strains (286). More recently, Cabral et al.
found that E. coli could kill C. albicans through a secreted, heat-labile factor dependent
on low magnesium levels (287). The impacts of C. albicans on E. coli in coculture
experiments are less clear. Some evidence indicates that C. albicans can enhance the
growth of a commensal E. coli strain in culture via an iron-dependent interaction or that
growth in a mixed biofilm can increase bacterial ofloxacin tolerance through interac-
tions of E. coli with fungal beta-1,3-glucan (288, 289). Alternatively, C. albicans may
negatively impact the short-term growth of E. coli in a biofilm, while farnesol produced
by the fungus sensitizes E. coli to the antibiotic polymyxin B (263, 290).

The relationship between A. baumannii, a common cause of antibiotic-resistant
nosocomial infections, and C. albicans is antagonistic in both in vitro and in vivo models
(Fig. 2). A. baumannii has been shown to preferentially associate with the hyphal form
of C. albicans and to demonstrate significant killing of hyphae but not yeast cells (291).
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As a result, A. baumannii was able to decrease the lethality of C. albicans infection in a
nematode model, as well as biofilm formation on abiotic surfaces (291). It was later
shown that hyphal adherence and killing were mediated by both the bacterial outer
membrane protein OmpA and heat-labile secreted proteins (292). However, C. albicans
is not defenseless in this interaction, and farnesol produced by C. albicans can inhibit
the growth of A. baumannii (291). Farnesol interferes with a number of cellular
functions in A. baumannii, including membrane integrity, cell division, biofilm forma-
tion, and motility (293). It also induced an upregulation of efflux pumps and OmpA,
suggesting possible defense mechanisms of A. baumannii against C. albicans (293).
Interestingly, recent work has revealed that A. baumannii uses OmpA to bind to the C.
albicans protein Hyr1p and that antibodies raised against Hyr1p recognize several A.
baumannii surface antigens and are protective against infection in a mouse model
(294).

S. enterica serovar Typhimurium, a pathogen responsible for the eponymous
diarrheal disease salmonellosis, also appears to be able to antagonize C. albicans,
particularly in the hyphal form (Fig. 2). A nematode model demonstrated that during
coinfection along with S. enterica, filamentation of C. albicans was reduced in a
dose-dependent fashion (295). A similar effect could be achieved by growing Candida-
infected worms in filtered stationary-phase S. enterica supernatants, implicating a
secreted and growth-dependent molecule. Additionally, in a coculture model, S. en-
terica reduced the viability of fungal cells in planktonic culture, particularly at 37°C
(human body temperature), and inhibited Candida biofilm formation in a dose-
dependent manner (295). The bacteria were able to kill both yeast and hyphal cells,
although hyphal killing was more pronounced. Later work implicated the S. enterica
type III secretion system (T3SS) proteins SopB (an effector protein) and SipB (a trans-
locase) in the killing of C. albicans, particularly hyphal cells (296). The bacteria re-
sponded to the presence of C. albicans by upregulating the production of sopB
transcripts, while the inactivation of either gene led to significant reductions in S.
enterica-mediated killing (296). It is likely that there are other mechanisms of S. enterica
interfering with C. albicans growth, however, given that T3SS killing occurs via direct
contact, while the previous study found that the bacterial supernatant could inhibit
hyphal growth (295).

In some cases, fungi may be able to play a protective role against bacterial
pathogens. For example, recent work demonstrated that the yeast Malassezia globosa
secretes an aspartyl protease that cleaves a Staphylococcus aureus virulence factor
(protein A) important in biofilm formation and immune evasion, potentially protecting
the skin environment from bacterial pathogenesis (297). Additionally, gut fungi may be
protective against C. difficile, an opportunistic pathogen that causes severe and debil-
itating diarrhea and frequently becomes a problem after broad-spectrum antibiotic
treatment depletes competing bacterial flora and allows the pathogen to bloom. There
is evidence that the yeast Saccharomyces boulardii may be able to both prevent and
mitigate this bacterial infection during antibiotic treatment (298–300). Mechanistically,
S. boulardii can increase the intestinal production of anti-C. difficile-toxoid IgA, reduce
toxin binding by producing a protease that degrades C. difficile toxins, and promote
anti-inflammatory pathways in the host (301–304). As such, S. boulardii is of interest as
a potential probiotic organism to prevent C. difficile infection in susceptible populations
or to treat recurrent, refractory existing infections (299, 305–307).

Synergistic Virulence in Mixed Fungal-Bacterial Infections

While there are numerous examples of antagonism between fungi and bacteria in
culture models, in vivo work reveals that coinfection can frequently lead to synergistic
virulence and worse outcomes for the host, even when it comes to some of those same
antagonistic species (274). For example, in contrast to their relationship outside the
host, infection models frequently demonstrate enhanced virulence occurring due to
coinfection with C. albicans and P. aeruginosa (Fig. 2). Hospitalized patients with
Candida colonization of the respiratory tract were more susceptible to pseudomonal
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ventilator-associated pneumonia, and patients colonized with Candida treated with
antifungals had a decreased risk of pseudomonal pneumonia (308, 309). In murine
models, rats given P. aeruginosa developed pneumonia only in the presence of C.
albicans, while a mouse burn injury model demonstrated that infection with P. aerugi-
nosa preceding infection with C. albicans led to significantly increased mortality com-
pared to infection with either microbe alone (310, 311). Recently, a zebrafish swim
bladder infection model was used to demonstrate the synergistic virulence of P.
aeruginosa and C. albicans, with significant mortality which could be attributed to
enhanced C. albicans epithelial invasion (312). Importantly, the two organisms may still
exert antagonistic effects in the in vivo environment, but interactions with the host may
be responsible for synergistic impacts of coinfection. Additionally, the context and type
of infection may affect the relationship, with a mouse gut coinfection model indicating
that C. albicans in fact has a protective effect against P. aeruginosa virulence by
suppression of the siderophores pyoverdine and pyochelin (313).

Similarly, despite antagonism in culture, both in vivo and in vitro infection models of
C. albicans and E. coli show increased virulence and mortality relative to either infection
alone (Fig. 2). Intravenous infection by C. albicans followed by either E. coli or just its LPS
led to increased mortality in a mouse model (314). Similarly, a synergistic effect is seen
when mortality of intraperitoneal coinfection is compared to mortality of either mi-
crobe alone (315). LPS appears to be critical for this effect; multiple studies have
indicated that LPS alone is sufficient to induce increased mortality during both intra-
venous and intraperitoneal C. albicans infections, in addition to showing that admin-
istration of anti-LPS antibody reduced mortality, endotoxemia, and bacteremia during
coinfections of C. albicans with either E. coli or just its LPS (314, 316). The involvement
of LPS suggests a role for the host immune response in this interaction. In vitro, a Caco-2
cell culture model demonstrated that coculture with C. albicans enhanced epithelial
translocation of E. coli cells, even in the presence of secretory IgA (317). Similarly,
coinfection of Caco-2 cells with C. albicans and enterohemorrhagic E. coli led to faster
pathogen invasion, increased C. albicans virulence and hypha-associated gene expres-
sion, and greater severity of damage to cells (318).

C. albicans also demonstrates synergistic virulence in mixed infections with Staph-
ylococcus aureus as well as a beneficial relationship in mixed-culture models (Fig. 2)
(231). While S. aureus is ineffective at forming biofilms alone, in vitro it can form
polymicrobial biofilms with C. albicans, specifically binding with a high affinity to
hyphae (319, 320). Furthermore, in such a mixed-species biofilm, S. aureus demon-
strates increased antimicrobial resistance, including resistance to vancomycin. Multiple
studies have shown that this is at least partially due to physical protection of S. aureus
by the extracellular matrix of the biofilm (319, 321); however, recent work also impli-
cates low doses of the Candida quorum-sensing molecule farnesol in the development
of antibiotic resistance in S. aureus due to an increase in the expression of efflux pumps
(322). Importantly, these effects are context-dependent, as higher doses of farnesol can
instead inhibit biofilm growth of S. aureus and sensitize it to antibiotics (320). On the
in vivo side, mouse models also demonstrate that C. albicans can enhance the estab-
lishment of infection with S. aureus. Oral candidiasis facilitated both oral establishment
and systemic dissemination of S. aureus, which could be impeded by antifungal
therapy; furthermore, C. albicans enhanced the establishment of infection with S. aureus
even when the two microbes were injected at different sites in a mouse model,
suggesting the influence of the host immune response (323–325). Further work dem-
onstrates that the two can exhibit synergistic virulence in a peritonitis model and lead
to increased mortality compared to single infections (326). Given the frequent coiso-
lation of S. aureus and C. albicans from human infections, ranging from burn wounds
to lung infections, candidemia, and infections of implanted medical devices, the
interaction between the two species is of significant clinical concern.

Candida and Oral Streptococcus Species: Multiple Mechanisms of Mutualism

The relationships between Candida and Streptococcus species in the oral cavity are
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of particular clinical and research interest, as both colonize much of the human
population, and their interactions may contribute to the pathogenicity of dental plaque
biofilms (232, 327). Candida typically colonizes mucosal surfaces in the oral cavity but
has been shown to associate with bacterial species, frequently Streptococcus, in oral
biofilms on both mucosal and dental surfaces (328–330). Several studies indicate that
Candida and Streptococcus species can have synergistic relationships in biofilm forma-
tion, although specific interactions may vary between the specific Streptococcus species
involved (Fig. 2). On a global level, 16S rRNA and ITS gene sequencing of the oral
microbiota showed that adults with higher levels of Candida had increased levels of
saccharolytic, acidogenic bacteria, including Streptococcus species (331). In general,
Streptococcus species may produce nutrients such as lactate and glucose that can be
used by Candida, while Candida can relieve oxygen tension to allow growth of
Streptococcus (231, 332).

In one example, mixed biofilms of C. albicans and Streptococcus gordonii on saliva-
coated surfaces showed increased biomass and development of fungal hyphae com-
pared to Candida-only biofilms (Fig. 2) (333). Mechanistically, while Candida uses the
quorum-sensing molecule farnesol to repress its own hyphal morphogenesis at high
concentrations, S. gordonii was able to relieve farnesol-induced hyphal repression, a
capability that was dependent on the interspecies quorum-sensing molecule autoin-
ducer 2 (AI-2) (333). Interestingly, the AI-2 molecule produced by another oral bacterial
species, Aggregatibacter actinomycetemcomitans, has the opposite effect and inhibits
hyphal growth and therefore biofilm formation of C. albicans (334). Additionally, while
growth in a mixed biofilm increased total biomass, the quorum-sensing molecule
competence-stimulating peptide (CSP) produced by S. gordonii favored the growth of
C. albicans in a planktonic state rather than in a biofilm (335); the use of both AI-2 and
CSP may allow the bacteria to modulate the amount of fungi in mixed communities by
promoting either hyphal growth and planktonic dispersal from the biofilm, respectively.

The oral bacterium Streptococcus mutans is also capable of growing in mixed
communities with C. albicans, with beneficial effects on its growth (336). This relation-
ship appears largely dependent upon the presence of sucrose; while S. mutans binds
poorly to C. albicans itself, it produces glucosyltransferase enzymes that bind to the
surface of the fungi and produce glucans from sucrose. This creates a polysaccharide-
rich extracellular matrix to which the bacteria themselves can bind (337, 338). There is
evidence that C. albicans itself may promote this interaction; bacterial-fungal condi-
tioned media increased the growth of S. mutans in a biofilm, specifically upregulating
glucosyltransferase activity to enhance microcolony formation (336). It was later iden-
tified that farnesol achieved this effect at low concentrations, despite inhibiting the
growth of S. mutans, and other bacterial species, at high concentrations (336).

However, S. mutans can repress hyphal morphogenesis in the yeast, which has been
attributed to multiple mechanisms (Fig. 2). S. mutans CSP repressed hyphal growth,
similarly to S. gordonii, while the bacterium also produces a fatty acid signaling
molecule, dubbed Streptococcus diffusible signal factor or SDSF, that has a similar effect
(339, 340). Interestingly, this effect may be overcome in a more complex community, as
C. albicans showed enhanced hyphal formation and tissue invasion when grown with
a combination of S. mutans, S. sanguinis, Actinomyces viscosus, and Actinomyces odon-
tolyticus (341). Additionally, it was shown that a mixed biofilm with C. albicans strongly
upregulated S. mutans quorum-sensing gene networks, through increased levels of the
hexapeptide pheromone comX-inducing peptide (XIP); those authors speculate that
proteases produced by C. albicans degrade proteins to produce XIP, thereby triggering
the activation of the bacterial quorum-sensing networks (342).

S. mutans has long been known as an etiological agent of early childhood dental
caries, and more recent work has found that C. albicans is also frequently found in
carious lesions. Therefore, there is interest in the potential cariogenic synergy of these
two organisms (343, 344). However, the effects of mixed growth on caries formation
remains somewhat unclear. For example, it was shown that mixed-species biofilms have
increased lactic acid production in vitro but that C. albicans actively increases the pH of

Cross-Domain Interactions in the Microbiome Microbiology and Molecular Biology Reviews

March 2019 Volume 83 Issue 1 e00044-18 mmbr.asm.org 19

https://mmbr.asm.org


the biofilm, which could theoretically reduce cariogenic potential (345). Contrarily, in an
in vivo model, coinfection with S. mutans and C. albicans in a rat model led to significant
increases in the viable populations of both organisms in plaque biofilms as well as
increased and synergistic severity of dental caries on the smooth sides of the teeth
(338). Finally, another study found that while both S. mutans and C. albicans were
capable of generating occlusal caries (those at the interface between the upper and
lower teeth) in a rat model, there was no enhancement of this effect when both
organisms were inoculated together (346).

Streptococcus oralis has been more definitively implicated in pathogenic interactions
with C. albicans in the oral cavity (Fig. 2). Both organisms may enhance the growth of
the other in mixed biofilms on both abiotic and mucosal surfaces, and dual-species
biofilms conferred a greater ability to invade both oral and esophageal mucosal tissue
models on C. albicans (347–349). In vivo, the two organisms had a synergistic effect on
infection in a mouse model; specifically, C. albicans promoted colonization with S. oralis,
while coinfection promoted deep-organ dissemination of C. albicans and increased
levels of oral candidiasis (350). A follow-up study examined the potential mechanism
behind this effect and showed that the two organisms synergistically stimulate in-
creases in the host protein calpain, which targets and cleaves the epithelial junction
protein E-cadherin and allows for increased fungal paracellular invasion (351).

Overall, these observations indicate that several commonly occurring oral Strepto-
coccus species have developed mutualistic relationships with C. albicans, resulting in
enhanced biofilm formation, growth, or infective potential for one or both species. In
vivo, it is likely that multiple species interact in more-intricate communities, with the
production of multiple sets of quorum-sensing molecules, metabolites, and nutrients
that may have more-complex interactions and implications for oral health.

Fungus-Bacterium Interactions in the Microbiome

Several studies of the human mycobiome have been performed in parallel with
analyses of the resident bacteria, providing an opportunity for correlating the presence
and abundance of fungal and bacterial taxa. One group was able to identify a number
of such correlations in the gut microbiome, including strong negative correlations
between Bacteroides and Candida and strong positive correlations between Syntropho-
coccus and Pichia, Anaerostipes and Fusarium, and Bryantella and Fusarium (204).
Additionally, Candida and Saccharomyces were both positively correlated with the
archaeon Methanobrevibacter and negatively correlated with the archaeon Nitrosospha-
era (204). A similar analysis of fungus-bacterium correlations in the gut microbiome
found negative correlations between Penicillium and Faecalibacterium and between
Cladosporium and Ruminococcaceae and a positive correlation between Botrytis and
Rikenellaceae (206). While interesting, the potential implications of these associations
have not been identified. Hoffman et al. suggested the existence of syntrophic “guilds”
of bacteria, archaea, and fungi, with members cooperatively producing metabolites for
others to use, but further work is required to experimentally assess the functional
relationships between taxa across kingdoms (204).

Some work has also investigated bacterial-fungal networks in the oral microbiome.
Increased levels of Candida have been associated with reduced bacterial diversity, with
increased Bacillus and reduced Fusobacteria, Flavobacteria, and Bacteroidia abundances
(331). As mentioned above, these microbiomes became dominated by saccharolytic
and acidogenic bacteria, including Streptococcus species; this may be linked to the
increased cariogenic potential of these communities (331). Additionally, an in vitro
model suggested that the presence of Candida may have impacts on the proliferation
of different species in an oral microbial community. Specifically, researchers found that
inoculating saliva samples with C. albicans allowed the growth of anaerobic bacteria,
including Veillonella, Fusobacterium, Prevotella, and Leptotrichia, even under apparently
aerobic culture conditions, while samples that were not inoculated with the yeast were
dominated by strictly or facultatively aerobic species (352). The authors of that study
speculate that the rapid oxygen consumption by C. albicans may create microanaerobic
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niches for such bacterial genera to grow and that its presence in salivary biofilms may
have important implications for microbial composition.

Other Unicellular Eukaryotes in the Microbiome

While fungi are the most common unicellular eukaryotes colonizing the body,
organisms such as amoebozoans, trypanosomatids, apicomplexans, metamonads, and
heterokonts can also infect human hosts (353). While there is comparatively less work
exploring this topic, recent research has revealed that some of these organisms can
interact with bacterial commensals or pathogens in a variety of ways. Infection with
such organisms can itself alter the resident microbiota, the preexisting commensal
community can alter the course of infection with these organisms, or, in some cases,
both can occur (354). Here, we discuss the interactions of the microbiota at multiple
body sites with the heterokont genus Blastocystis; the amoebozoan genus Entamoeba;
the metamonad genera Giardia and Trichomonas; the apicomplexan genera Plasmo-
dium, Toxoplasma, and Cryptosporidium; and the trypanosomatid genus Leishmania.

According to culture-independent surveys of the human gut, Blastocystis species are
the most common nonfungal eukaryotes, with significant carriage rates even in indus-
trialized nations (353, 355, 356). In a rural Mexican community, carriage of Blastocystis
was found to be associated with increased bacterial alpha diversity and significant
differences in bacterial community composition, including reductions in the abundance
of Prevotella copri and increases in the abundances of several Clostridia lineages,
including Ruminococcus bromii. Additionally, colonization was associated with in-
creased levels of several fungal taxa as well as metabolic differences and reduced levels
of intestinal inflammation markers (356). Similarly, another group studying Blastocystis
in a French cohort found increased alpha diversity and enrichment in Ruminococcaceae
associated with Blastocystis colonization. However, they also found that the Prevotel-
laceae abundance was increased rather than decreased in colonized individuals (357).
Supporting this, a study in Denmark found that colonization with Blastocystis was
associated with enrichments in Prevotella, alongside reductions in Bacteroides abun-
dances (358), and a metastudy of subjects from multiple continents found that Pre-
votella copri was associated with Blastocystis colonization and that Bacteroides species
and Ruminococcus gnavus were associated with uncolonized subjects (359). Overall, the
specific impacts of Blastocystis colonization are somewhat unclear and may depend on
the sociogeographic context and particular subtype of Blastocystis used (356).

Entamoeba histolytica causes the potentially lethal illness amoebic dysentery, a
significant health issue in some parts of the world, although it has long been recog-
nized that exposures are frequently asymptomatic; on the contrary, the related species
Entamoeba dispar is nonpathogenic (360, 361). E. histolytica infects the gut and actually
preys on the gut microbiota, although they are not strictly necessary for its growth, and
its association with the gut microbiota may enhance its pathogenicity and protect it
from oxidative stress (362–364). Both amoeba-induced dysentery and asymptomatic
colonization with Entamoeba species have been associated with alterations to the gut
microbiota. Quantitative PCR (qPCR) analysis revealed that amoebic dysentery reduced
the abundance of numerous taxa while increasing the abundance of Bifidobacterium,
while 16S rRNA gene sequencing demonstrated that asymptomatic colonization was
associated with increased alpha diversity and increased abundances of several taxa but
significant reductions in the abundance of Prevotella species, particularly P. copri (365,
366). Interestingly, a study of Bangladeshi children found that among those found to be
colonized with E. histolytica, those that experienced symptomatic disease had higher
levels of P. copri detected by qPCR, suggesting that higher levels of this taxon may
predispose individuals to developing symptoms of amoebic infection (367).

On the other hand, the same group found that some gut microbes may be
protective against E. histolytica in mouse models. First, mice treated with antibiotics to
deplete their bacterial microbiota were more susceptible to E. histolytica infection and
displayed a deficit in neutrophil recruitment to the gut (368). More specifically, mice
colonized with SFB, which closely associate with the gut epithelium and provoke a TH17

Cross-Domain Interactions in the Microbiome Microbiology and Molecular Biology Reviews

March 2019 Volume 83 Issue 1 e00044-18 mmbr.asm.org 21

https://mmbr.asm.org


response, were protected from amoebic colonization and had an increased neutrophil
presence in the gut. Intriguingly, this protection appears to be at least partially due to
changes induced in bone marrow dendritic cells, as adoptive transfers of these cells
from SFB-positive (SFB�) to SFB-negative (SFB�) mice was sufficient to confer protec-
tion, and gut-marrow signaling may be based on SFB-induced increases in levels of
serum amyloid A (369).

Gut bacteria have also been studied in the context of infection with Giardia, a genus
of metamonads that primarily colonizes the small intestine. While asymptomatic in
many, it can cause acute diarrheal illness and recently has also been associated with the
development of postdiarrheal irritable bowel syndrome (IBS). An accumulating body of
work demonstrates bidirectional impacts between Giardia infection and the composi-
tion of the gut microbiota (370). For example, it was recognized that susceptibility to
Giardia lamblia (also known as G. duodenalis or G. intestinalis) infection in mouse models
was dependent on the source of the mouse, with Taconic Farms mice being resistant
but Jackson Laboratories mice being susceptible. Antibiotic treatment eliminated
resistance, but cohousing of the two groups conferred resistance to all mice, implicat-
ing the composition of the gut microbiota in this phenotype (371).

However, gut bacteria may contribute to symptom development, as germfree mice
can be colonized by Giardia but suffer less intestinal pathology than conventional mice
(372, 373). This may be due to a dampened host response, as germfree animals produce
fewer Giardia-specific antibodies and have less immune cell accumulation in the lamina
propria than their conventional counterparts (372). Similarly, antibiotic-treated animals
have fewer activated CD8� T cells in the lamina propria during infection (374).
Furthermore, G. lamblia has been associated with small intestinal bacterial overgrowth
during infection as well as decreased epithelial tight junction integrity, increased
permeability and bacterial adhesion, and mucosal inflammation even after parasite
clearance; this suggests a long-term disturbance of intestinal homeostasis due to
infection, which could potentially contribute to the development of postdiarrheal IBS
(375–377). Work in a Caenorhabditis elegans model has also suggested that exposure to
G. lamblia may induce functional changes in commensal microbes, promoting intestinal
colonization by bacteria and leading to lethality not observed during individual inoc-
ulations of either bacteria or parasites (378).

To more specifically profile the changes observed in the bacterial community,
Barash et al. studied the effects of G. lamblia infection on the bacterial composition
along the gastrointestinal tract in antibiotic-treated and naive mice (379). They found
that antibiotic-treated mice were significantly more susceptible to Giardia colonization,
displaying increased parasite burdens even at 2 weeks postinfection, and antibiotic-
treated mice had more-widespread and longer-lasting community disruptions associ-
ated with Giardia infection; these included depletions of Clostridiaceae (Firmicutes) and
enrichments of Moraxellaceae and Rhodocyclaceae (both Proteobacteria), particularly in
the proximal small intestine. However, even untreated mice suffered disruptions to the
composition of their gut bacteria (379).

However, there is some research suggesting that Giardia infection may actually
reduce the incidence of diarrheal disease in areas with frequent gastrointestinal patho-
gen exposure, although the evidence is mixed and may be dependent on the specific
coinfection (380–384). In support of such an effect for bacterial pathogens, in a mouse
model, Giardia muris coinfection significantly attenuated pathology from the bacterium
Citrobacter rodentium, reducing weight loss, colitis, pathogen load, and bacterial at-
tachment while increasing host antimicrobial peptide production. Furthermore, coin-
fection of human intestinal epithelial cell monolayers with G. lamblia and enteropatho-
genic E. coli led to enhanced antimicrobial peptide production, and G. muris reduced
the survival of both C. rodentium and E. coli in a coculture model (385). G. lamblia also
appears to be able to antagonize host inflammatory responses, possibly by different
mechanisms based on the genetic assemblage of the parasite. One study demonstrated
that G. lamblia assemblage A secretes a cysteine protease that degrades the neutrophil
chemoattractant IL-8 (CXCL8), even in the presence of a direct, inflammatory bacterial
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insult in the form of S. enterica serovar Typhimurium (386, 387). On the other hand, a
study reported that G. lamblia assemblage B instead appeared to dampen inflammatory
responses to enteroaggregative E. coli during protein malnutrition, reducing myeloid
cell activation despite an increased number of these cells in the ileum (388).

Not all metamonads interact with bacteria in the gut, however, and there is evidence
that the human genital tract pathogen Trichomonas vaginalis may have a mutually
antagonistic interaction with Lactobacillus species in the vaginal microbiota. Epidemi-
ologically, some recent studies have demonstrated a relationship between trichomo-
niasis and non-Lactobacillus-dominated vaginal microbiota, which can be associated
with the disease bacterial vaginosis but also occurs asymptomatically in a subset of
women (75, 389–393). Experimentally, early work recognized that T. vaginalis could
have a negative impact on the growth of Lactobacillus acidophilus in coculture exper-
iments (394). More recently, others have found that T. vaginalis can reduce the numbers
of lactobacilli but not other vaginal bacteria associated with epithelial cells (395), while
a number of Lactobacillus species were seen to inhibit adhesion of T. vaginalis to
epithelial cells and even promote displacement of the parasite in a contact-dependent
manner (396, 397). Additionally, T. vaginalis appears to have an association with the
vaginosis-associated bacterium Mycoplasma hominis, which can be taken up and
survive within cytoplasmic vacuoles. Some T. vaginalis isolates are stably associated
with the bacterium, and such isolates may increase the local inflammatory response,
potentially increasing disease severity (398–402).

There is also evidence of interactions between apicomplexans and the microbiota.
For example, Cryptosporidium parvum, an intestinal parasite, has a differential infective
capacity in mice based on the presence of the microbiome; conventional mice are
resistant to C. parvum colonization for several weeks, while germfree mice become
heavily infected much more quickly (403, 404). However, mice treated with antibiotics
to deplete their gut bacteria remained resistant to infection, suggesting a more
complex mechanism than colonization resistance by competition (404). As the in-
creased susceptibility in germfree mice occurs in both immunocompetent and severe
combined immunodeficiency models, which lack an adaptive immune system, the gut
microbiota may confer resistance through nonspecific immune mechanisms (403).

The gut microflora also appears to have a role in mediating the host response to
infection with another apicomplexan parasite, Toxoplasma gondii. This organism ini-
tially infects the small intestine, invading the epithelium to undergo differentiation
from infective sporozoites to mobile tachyzoites. This epithelial damage allows in-
creased bacterial penetration into the epithelium and interaction with the immune
system, which can have both positive and negative consequences (354, 405). On the
one hand, gut bacteria may play a supportive role in the mucosal immune response to
T. gondii. In mice, the recognition of and immune response to T. gondii canonically
occur through the action of dendritic cell Toll-like receptor 11 (TLR-11) and subsequent
production of IL-12 (406). However, stimulation of other TLRs by the gut microbiota can
also lead to IL-12 production, even compensating for the lack of TLR-11 in knockout
mice, during oral T. gondii infection. This does not occur during systemic infection, in
which the immune response is entirely TLR-11-dependent, suggesting that local inter-
actions such as gut epithelium damage by the parasite are necessary for microbial IL-12
stimulation to occur. Gut microbes may thus serve as a molecular adjuvant of the
mucosal immune response and may perhaps be even more important during human
infections, given the lack of a functional TLR-11 homologue (406).

On the other hand, the gut flora can exacerbate intestinal inflammation and lead to
significant ileitis and even death in mouse models (407, 408). Multiple groups have
found that T. gondii infection results in inflammation only in the presence of the gut
microbiota, as germfree or antibiotic-treated mice do not suffer these effects (407, 408).
In particular, it appears that infection with T. gondii selectively expands Proteobacteria,
particularly Enterobacteriaceae, which leads to the development of intestinal inflamma-
tion and pathology in this context (407, 408). There may be a positive-feedback loop
exacerbating both inflammation and Enterobacteriaceae overgrowth; T. gondii infection
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in the presence of Enterobacteriaceae leads to intestinal damage and Paneth cell death,
while the loss of the antimicrobial peptides produced by these cells may contribute to
Enterobacteriaceae overgrowth (407). Additionally, some work suggests that T. gondii
infection may lead to a loss of immunological tolerance to commensals, possibly due
to increased mucosal exposure to gut microbes (409). Even after infection clearance
and epithelial healing, mice had increased populations of apparently commensal-
responsive CD4� T cells. Furthermore, transferring bacterium-specific splenic T cells to
a T. gondii-infected mouse results in significant proliferation and differentiation into
effector cells, while this does not occur in uninfected hosts, demonstrating an increase
in the frequency of immune cells responsive to the commensal microbiota during
infection (409).

The host gut microbiota may also impact the severity and transmission of another
apicomplexan-related disease, malaria, caused by parasites of the genus Plasmodium
(410). Studies in mice have demonstrated that animals from different vendors, and
therefore with different gut microbial compositions, were differentially susceptible to
infection, with varied parasite burdens and mortality outcomes. Furthermore, this
resistance or susceptibility could be transferred to germfree mice via cecal transplants
(411). This resistance appeared to be related to an elevated humoral immune response,
and resistance was associated with increased abundances of Lactobacillaceae, Bifido-
bacteriaceae, and Clostridiaceae while susceptibility was associated with higher levels of
Bacteroidaceae, Prevotellaceae, and Sutterellaceae (411). Similarly, a study of the fecal
bacterial microbiota of a Malian cohort found that a particular microbial assemblage,
which included higher levels of Bifidobacterium, Lactobacillus, and Streptococcus and
lower levels of Prevotellaceae and various Clostridia taxa, was associated with a reduced
incidence of malaria (412). Furthermore, Plasmodium sporozoites possess certain sur-
face glycans shared by some species of Enterobacteriaceae, and studies in both humans
and mice suggest that antibodies against these glycans may be cross-protective against
infection with Plasmodium (413).

Plasmodium infection may also cause alterations to the gut microbiota, and humans
suffering from malaria may experience gastrointestinal symptoms (414–416). Work in a
mouse model found that infection with Plasmodium berghei led to intestinal pathology
in addition to dysbiosis, characterized by reductions in Firmicutes and increases in
Proteobacteria and Verrucomicrobia abundances. In particular, Lactobacillaceae abun-
dances were reduced during infection, while Verrucomicrobiaceae and Enterobacteria-
ceae abundances were increased; interestingly, alterations to the gut community could
be observed before the onset of gastrointestinal pathologies (416). Additionally, infec-
tion of mice with Plasmodium yoelii leads to a reduction of colonization resistance
against S. enterica (417). The microbiota may also play a role in the susceptibility of the
mosquito host to carriage of the parasite. For example, the ability of Plasmodium to
colonize and mature within its Anopheles mosquito vector is at least partially depen-
dent on the midgut bacteria, via mechanisms including direct antiparasite antagonism
and the ability to influence the insect’s immune system. In particular, the bacterium
Serratia marcescens and some species of Enterobacter have been implicated in reducing
parasite colonization (418–422).

Interactions between bacterial microbiota and unicellular eukaryotes may also take
place in skin communities; several studies have suggested that cutaneous leishmani-
asis, caused by trypanosomatids of the genus Leishmania, may interact with skin
bacteria (422). Infection with Leishmania braziliensis in humans leads to dysbiosis of the
skin bacterial microbiota, with reductions in the diversity and overgrowth of the genera
Staphylococcus and/or Streptococcus; similar changes can be observed in a mouse
model using Leishmania major ear infection (423). Interestingly, the specific changes
observed may be dependent on symptom severity, with resolvable infections leading
to Staphylococcus overgrowth and nonhealing lesions leading first to Staphylococcus
but ultimately to Streptococcus dominance. Furthermore, parasite-associated dysbiosis
could be transferred to naive mice by cohousing, and if these dysbiotic mice were then
exposed to L. major, they displayed greater lesion severity and higher levels of
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inflammatory markers than mice with normal skin microbiota (423). The gut bacterial
microbiota may also be affected during Leishmania infection, with a study demonstrat-
ing decreases in Gammaproteobacteria abundances in both healing and nonhealing
mouse models, although such an effect requires more research (424).

The outcome of Leishmania infection in germfree animals is unclear, potentially
dependent on the route of infection, parasite inoculation dose, or mouse strain. In one
case using subcutaneous footpad infection, it was shown that germfree mice were able
to mount an antiparasite response similar to that of conventional animals but that they
failed to heal lesions and were more densely colonized than conventional mice or mice
conventionalized postinfection (425, 426). However, in a study using an intradermal ear
infection model, germfree mice were more permissive to growth of L. major but had
lesions that were smaller and less necrotic (427). Similarly, subcutaneous tail and ear
infection models with Leishmania amazonensis demonstrated that germfree mice had
smaller lesions than those of conventional mice (422, 428). Additionally, the microbiota
of the Leishmania infantum vector Lutzomyia longipalpis (sand fly) appears to be critical
for the development of the parasite in the insect midgut; infection of L. longipalpis
results in disturbance and loss of diversity in the bacterial microbiota, while depletion
of the gut microbiota with antibiotics impeded the parasite’s ability to replicate and
develop in the fly midgut (429).

Summary

Fungi may make up a relatively small proportion of the human microbiota, but their
relationships with their bacterial neighbors and the host are not insignificant. Advances
in sequencing technology have allowed a much greater understanding of the diversity
of human-associated fungi than was possible with culture-dependent methods, and
while fungal marker gene databases lag behind those for bacteria, progress is being
made. It is becoming increasingly clear that fungi persistently colonize a range of body
sites, form a variety of antagonistic or cooperative relationships with bacterial species,
and can affect the course of disease during coinfections.

In particular, the ubiquitous human-associated fungus C. albicans demonstrates a
range of interactions with bacteria. There are a number of examples of cooperative
interactions between C. albicans and bacterial species, particularly in the oral environ-
ment. However, there are just as many examples of antagonism, including competition
in shared niches and direct mechanisms of killing. Importantly, there are multiple
examples in which bacterial species have an antagonistic relationship with C. albicans
in an in vitro setting but demonstrate synergistic virulence in in vivo models, highlight-
ing the important role that the host and possibly other species of bacteria and fungi
may play in modulating some of these interactions.

Much of the interaction between bacteria and fungi is mediated by quorum-sensing
molecules. Farnesol, a C. albicans quorum sensor that inhibits hyphal morphogenesis,
is particularly important and has various effects depending on the concentration and
context; it has fairly strong antimicrobial effects on multiple bacterial species at high
doses but can have positive effects on bacterial fitness at low doses, including enhanc-
ing biofilm growth and increasing antibiotic resistance. Bacterial species themselves
use a host of quorum sensors, including AI-2, CSP, Fsr, and farnesol mimics such as HSL,
to regulate hyphal growth of C. albicans in mixed communities; in at least one case, C.
albicans may actually induce a quorum-sensing system, specifically the XIP system in S.
mutans. Additionally, a number of bacterial species have developed strategies to kill or
suppress C. albicans, particularly in the hyphal form.

Moving forward, there are several directions to pursue. On a technical level, expan-
sion and improved curation of fungal databases will be required to continue making
progress, particularly in the arena of metagenomics and metatranscriptomics. This is
particularly important to help overcome some of the limits of marker gene sequencing,
which lacks detail and the ability to identify strain-specific differences but has been
used in most studies to date. As has been found in bacteriome work, while descriptions
of resident taxa are informative, this approach cannot accurately account for the
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contributions of specific genes, regulatory pathways, and/or metabolites to the gut
community. Additionally, when studying relationships between fungi and bacterial
pathogens, work comparing in vitro and in vivo models will be important to account for
the impacts of the host and other microbiota, which may have a significant influence
on the interaction. Finally, while next-generation sequencing studies have revealed a
number of potential relationships between fungal and bacterial taxa in the gut micro-
biome, the biological implications of such relationships generally have yet to be
revealed. Performing interventional studies to identify the impacts of diet or other
factors, in parallel with in-depth metagenomics, metatranscriptomics, and/or metabo-
lomics, may help to reveal the potential relevance of such observations and uncover
functional networks of both fungal and bacterial species in the microbiome.

In addition to fungal colonization, human can be infected with a diverse array of
other unicellular eukaryotes, which frequently demonstrate a parasitic relationship with
their hosts. While the exact associations vary by organism, there is evidence for
interactions between unicellular eukaryotes and the microbiota of the skin, gut, and
genital tract. Infection with these organisms can alter the composition or function of
the resident microbiota, commensal microbes may provide protection against infec-
tion, or resident microbes can contribute to the pathology of infection; in many cases,
these interactions involve modulations of host immunity to exacerbate or protect
against pathological responses. Furthermore, the microbiota of insect vectors can also
interact with the parasites that they carry, either promoting or inhibiting development,
which can have important implications for the spread and transmission of these
diseases. Continuing work in this arena will benefit from the identification of specific
microbes that confer protective effects, comparisons of results from mouse models
with data from human subjects, and further elucidation of mechanisms via which
unicellular eukaryotes, the microbiota, and the host interact.

HELMINTHS

In research on the residents of the human gut, the relationship of macroflora such
as helminths to their microbial neighbors has been understudied. The term “helminth”
refers to a number of multicellular, parasitic worms that are responsible for a wide
variety of human diseases collectively known as helminthiases (430, 431). While many
have been largely eradicated from developed nations, they are a significant burden in
other parts of the world and cause hundreds of millions of cases of neglected tropical
diseases, including schistosomiasis, hookworm infection, elephantiasis, and tapeworm
infection, among others (430, 432–434). While commonly grouped together due to
gross morphological similarities, helminths actually form a polyphyletic group and have
a wide range of life cycles, reproductive strategies, infection locations, transmission
routes, and associated pathologies (431). Despite these differences, they are all extra-
cellular pathogens and can therefore elicit similar immune responses in the human
host. In particular, it has been suggested as part of the “old friends” hypothesis that the
increased incidence of autoimmune and allergic diseases in the developed world is
partially due to the successful eradication of helminth infections, leading to the loss of
a coevolved immunomodulatory influence (Fig. 3) (102–105, 107, 435–437). Currently,
there is even some research into the medicinal properties of worm infection for some
inflammatory autoimmune diseases (438–440).

Helminths: Multicellular Parasites

There are three major groups of helminths that infect humans (Fig. 1); two of these
groups fall into the phylum Platyhelminthes, commonly known as flatworms for their
appearance (431, 433, 441, 442). First, there are trematodes, members of the class
Trematoda, which are parasitic flatworms referred to as “flukes.” They can be broken up
into two practical groups: Schistosoma species are blood flukes that primarily reside in
the vasculature around the gut (S. mansoni and S. japonicum) or bladder (S. haemato-
bium) in the human host, while tissue flukes, including Fasciola hepatica, Paragonimus
westermani, and Echinostoma species, infect the liver, lungs, or intestines (443–445).
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Their life cycle includes a primary vertebrate host, where sexual reproduction occurs,
and one or more intermediate mollusk hosts, where they reproduce asexually (431,
446). The second group of helminths implicated in human disease are the cestodes
(Taenia species, Hymenolepis species, and Diphyllobothrium species), which are parasitic
flatworms of the class Cestoda in the phylum Platyhelminthes. Cestodes are more
commonly known as tapeworms and generally infect the gastrointestinal tract of
vertebrate species (447). They frequently have a two-phase life cycle: an intermediate
host consumes eggs passed from the primary host, hatched larvae penetrate into the
muscle, the primary host eats such contaminated meat, and the larvae reach maturity
in the gut and begin producing eggs (431, 433, 441, 442).

The largest group of clinically relevant helminths are the nematodes, or round-
worms. Collectively, they comprise the phylum Nematoda and include a wide and
diverse range of species with various habitats, reproductive strategies, and life cycles.
Many of these organisms parasitize vertebrates, and several dozen infect humans (431,
433, 441, 442). Filarial worms, which include the causative agents of elephantiasis
(Wucheria bancrofti, Brugia malayi, and Brugia timori) and river blindness (Onchocerca
volvulus), use arthropods as intermediate hosts and are transmitted via insect bites
(448). As such, they do not spend time in the gastrointestinal tract as a normal part of
their life cycle, instead living in the lymphatic system and subcutaneous tissues (449).
Most other pathogenic nematodes are categorized as intestinal helminths, as they are
transmitted via ingestion of contaminated food or water and spend at least part of their
life in the human host in the gut. Examples include pinworms (Enterobius vermicularis),
whipworms (Trichuris trichiura), and Guinea worms (Dracunculus medinensis) as well as
Ascaris and Trichinella species (433, 441, 442, 450). Hookworms (Necator americanus and
Ancyclostoma duodenale) and threadworms (Strongyloides stercoralis) are also partially
gut-resident, although these are transmitted through skin contact with contaminated
soil (433, 441, 442).

Importantly, as many helminths spend a significant portion of their life cycles in the
gastrointestinal tract of the human host, there is interest in their potential interactions

FIG 3 Outline of key interactions between helminths, the bacterial gut microbiota, and the host immune system,
including the “old friends” hypothesis that immunomodulatory influences of commensal bacteria and helminths
can promote a tolerance phenotype and reduce the risk of immune-mediated autoimmune or allergic disorders.
TNF-�, tumor necrosis factor alpha.

Cross-Domain Interactions in the Microbiome Microbiology and Molecular Biology Reviews

March 2019 Volume 83 Issue 1 e00044-18 mmbr.asm.org 27

https://mmbr.asm.org


with the native gut microbiota (Fig. 3). For gut-resident helminths, there is significant
evidence that the presence of the intestinal microflora is important for successful
infection, and some work has even implicated specific members of the microbiome.
Conversely, there is also a body of work investigating the impacts that helminth
infections have on the gut microflora of human and animal hosts; local interactions or
systemic immunological responses to worm infection have the potential to influence
the diversity, makeup, and function of the native gut community.

Ancient Enemies or Old Friends?

As mentioned above, helminth infection is thought to be an important part of the
old friends hypothesis (102, 103, 105, 107, 435–437). There is evidence that over the
thousands of years of coevolution with their human hosts, many helminths have
adapted to modulate the immune system, thereby allowing them to persist in chronic
infections. At the same time, the human immune system evolved in the context of
these chronic infections and may have adapted to use helminthic immunomodulatory
cues to regulate itself and prevent inappropriate activation and damage (103, 104). As
modern living conditions have become more hygienic, with cleaner food and water
supplies, exposure to helminths has become rare in developed nations. Given the
negative impacts of many helminth infections, this has been generally beneficial;
however, it is theorized that the lack of helminth infections may be associated with
deficiencies in immune system regulation, particularly in the arena of immunological
tolerance (451). Accordingly, individuals living in developed nations become more
likely to develop disorders involving inappropriate immunological reactions to harm-
less or self antigens, including allergies, asthma, IBD, type 1 diabetes, and multiple
sclerosis (Fig. 3) (437, 452, 453). On a more specific level, observational human studies
have demonstrated an inverse relationship between helminth infection and markers of
both atopy and autoimmune activity (454–457). For example, helminth infection was
associated with reduced dust mite skin test reactivity in Gabonese schoolchildren, while
a randomized controlled trial demonstrated that antihelminthic treatment reversed this
trend, and the intensity of schistosome infection was negatively associated with
antinuclear autoantibodies in a Zimbabwean population (456, 457).

It is believed that such effects occur through helminth-induced modulation of the
host immune system. A striking feature of helminth infection in general is the activation
of type 2 immunity, the host response against extracellular pathogens and allergens,
which is characterized by the differentiation of TH2 CD4� T cells and the production of
the interleukins IL-4, IL-5, and IL-13 (433, 458–460). Practically, this response results in
enhanced epithelial mucus production, smooth muscle contraction, and fibrosis of
granulomas, which can help to kill, expel, or seal off the parasite or its eggs and
promote rapid healing of parasite-induced damage (Fig. 3) (458, 460). Additionally,
activation of the TH2 response downregulates the proinflammatory TH1 and TH17
pathways, which are commonly associated with viral, bacterial, and autoimmune
diseases but can also contribute to pathological inflammation and tissue damage
during some helminth infections (458, 460). However, a range of helminth species have
developed mechanisms to dampen immune responses against them and thereby
promote their own persistence, including activation of Treg cells, regulatory B cells,
tolerogenic dendritic cells, and alternatively activated macrophages, as well as inhib-
iting host responsiveness to the parasite’s own antigens; in particular, production of the
regulatory cytokines IL-10 and transforming growth factor � (TGF-�) is implicated in the
control of both proinflammatory TH1/TH17 pathologies and allergic TH2-driven re-
sponses (Fig. 3) (430, 458–471). These changes allow some helminths to persist for years
in the human host and may be protective against allergic and autoimmune disorders.
Additionally, the immune system itself may have evolved to tolerate such immuno-
modulation rather than risking serious organ damage through a sustained immune
response (104, 430, 458); for example, several studies of chronic filariasis and schisto-
somiasis indicate that those with greater disease pathology tend to have stronger
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immune responses, while those that maintain chronic, low-level infection demonstrate
immune hyporesponsiveness (472–477).

Due to these broad immunological changes, deliberate helminth infection is being
investigated as a treatment for several autoimmune diseases. Helminths, given their
association with TH2 polarization, promotion of an immunoregulatory state, and im-
mune hyporesponsiveness, may be able to downregulate the self-inflammatory re-
sponses involved in autoimmune pathology. Furthermore, promising early observa-
tions indicating disease remission in naturally infected multiple sclerosis patients, which
was reversed after antihelminthic treatment, have encouraged research interest in this
area (478). There are several helminth species being investigated for this purpose,
including Trichuris suis (pig whipworm) and N. americanus (hookworm) (479). A number
of studies in animal models of autoimmune disorders have lent support to this
approach (470, 480–483); human trials for several autoimmune disorders are ongoing
and thus far have had mixed results (438, 484–487). However, helminth-associated
immunomodulation can also negatively impact the immune response to secondary
microbial infections. Studies have demonstrated potential helminth-related defects in
response to an array of vaccines and infections, including tetanus, toxoplasmosis,
tuberculosis, cholera, malaria, and infections by several viruses (488–500). In one
example, researchers demonstrated that mice infected with the gastrointestinal nem-
atode Heligmosomoides polygyrus or eggs of the trematode Schistosoma mansoni
experience increased viral replication and even reactivation of latent herpesvirus via
TH2 cytokine responses, particularly IL-4 (501).

Importantly, the immune regulation mediated by helminths may impact or be
impacted by the gut microflora, which occupy the same physical niche as many worms.
Humans, gut commensals, and helminths have coevolved for millennia, likely leading to
the development of bi- and tripartite interactions between host, bacteria, and worms.
Here, we discuss evidence that host-associated microbes may impact helminth infec-
tion success, that helminth colonization may impact the diversity and composition of
the gut microbiome, and that both can have impacts on immune function.

Helminths Can Modify the Native Microflora

Perhaps unsurprisingly given the range of immunological impacts that helminths
can have on their hosts, there is significant evidence that helminth infection is capable
of altering the composition and function of the gut microbiota. While specific mech-
anisms remain, in many cases, unelucidated, it is likely that direct effects exerted by the
helminths themselves, local immune responses to worms, general immunological shifts
induced by infection, and other mechanisms may coincide to alter gastrointestinal
conditions and allow for the proliferation of alternate gut microflora. However, there is
little consensus on specific effects such as taxonomic shifts, given that studies have
been conducted on a wide array of host and helminth species, and therefore, there is
significant breadth but little depth to the field at the moment (502–504). Despite this,
it seems clear that infections with a variety of helminths have the capacity to alter the
composition of the host microbiome.

In an example of a potentially common impact of different helminth species,
infections of rodents with the nematodes H. polygyrus (formerly Nematospiroides du-
bius), Trichuris muris, Nippostrongylus brasiliensis, and Trichinella spiralis may all promote
enrichment in the Lactobacillaceae lineage of gut bacteria, particularly in the ileum,
where the parasites reside. In one case, researchers analyzed the microbiota of healthy
mice during H. polygyrus infection, finding an enrichment in ileal Lactobacillaceae across
multiple experiments as well as an increase in the number of bacteria overall (505).
Interestingly, this group also demonstrated that while the larvae of this helminth have
a distinct microbial community, adult nematodes themselves come to harbor microbi-
ota closely resembling that of their host ileal environment (505). In another study of H.
polygyrus infection, it was shown that the abundance of Lactobacillus species in the
mouse small intestine correlated positively with infection (506). Specifically, researchers
found that the abundance of Lactobacillus increased during infection of the H.
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polygyrus-susceptible C57BL/6 strain of mice but not in the resistant BALB/c strain,
where the helminth cannot take hold (506).

Similarly, multiple studies of mice infected with T. muris showed an association
between infection and levels of this microbial lineage. Holm et al. found a significant
enrichment in Lactobacillaceae, while a contemporaneous study by Houlden et al.
found increased levels of Lactobacillales in infected animals; both studies also found
reductions in diversity resulting from chronic T. muris infection (507, 508). Increases in
levels of ileal Lactobacillaceae have also been observed in mice infected with N.
brasiliensis, alongside increases in Coriobacteriaceae and decreases in levels of Pepto-
streptococcaceae, Clostridiaceae, Turicibacteraceae, and IL-17-inducing SFB (509). Simi-
larly, mice infected with Trichinella spiralis displayed increased Lactobacillaceae and
decreased Turicibacteraceae and Clostridiaceae abundances in the ileum as well as
increased proportions of Ruminococcaceae and Lachnospiraceae in the colon (492).
However, not all models show this trend in response to nematode infection; Trichos-
trongylus retortaeformis infection of rabbits did not lead to changes in Lactobacillaceae
but resulted in decreased diversity, increased abundances of Leptonema and Desulfo-
cella, and decreased abundances of Ruminococcus and Bacteroides (510). Beyond alter-
ing the intestinal bacterial populations, murine infection with gastrointestinal nema-
todes may have impacts on the virulence of bacterial pathogens. While they did not
directly assess changes in the resident bacterial microbiota, Reynolds et al. demon-
strated that H. polygyrus infection enhances colonization, pathogenicity, and invasion
by S. enterica by altering the metabolic profile of the small intestine (511).

In addition to rodents, several studies have examined the impacts of infection with
various nematodes on the microbiota of the abomasum (fourth stomach) of ruminant
species. Infection with several related helminths has been shown to increase the
abomasal pH due to reduced gastric acid production, and this pH shift was associated
with an enrichment in anaerobic bacteria in the abomasa of sheep infected with
Ostertagia circumcincta (512). Later, the same group investigated the impacts of infec-
tion with another related nematode, Haemonchus contortus, on the microbiome of the
goat abomasum, finding significant differences in the beta diversities of the two groups
and that 19% of OTUs were different between infected and uninfected goats (513).
Specifically, infection was associated with increases in the abundances of several
Veillonellaceae OTUs, decreases in the abundances of several Lachnospiraceae OTUs,
and a mix of increases and decreases in the abundances of Bacteroidales OTUs.
Additionally, functional potential analysis, using the 16S rRNA gene composition to
predict the metagenomes present, revealed differential abundances of six gene families
and 9 KEGG pathways between the two groups, indicating possible modifications of
microbiome function (513).

The same group also demonstrated changes in the porcine microbiome after
infection with the pig whipworm, T. suis, with these alterations persisting even after
parasite clearance (514). Pigs were infected with worms for 53 days and then separated
into worm-free pigs that had cleared infection and pigs still carrying significant worm
burdens. The abundances of 48 out of 372 genera identified in the proximal colon
microbiota of the pigs were significantly altered by infection, whether infection per-
sisted or was cleared, suggesting long-lasting impacts from initial infection (514).
Interestingly, the abundance of Campylobacter varied by worm status: compared with
parasite-naive pigs, worm-heavy pigs harbored more Campylobacter bacteria, while
pigs which had cleared infection harbored less (514). In another study from the same
laboratory, researchers showed that a shorter infection with T. suis for 21 days was also
sufficient to induce significant changes in the gut microflora, impacting approximately
10% of genera present in control pigs (515). Specifically, researchers observed signifi-
cant increases in the abundances of Mucispirillum, Paraprevotella, and Desulfovibrio and
decreases in the abundances of several Clostridiales, including Ruminococcus, Blautia,
and Dorea (515). Additionally, metagenomics indicated that infected pigs showed an
reduction in the abundance of KEGG pathways involved in carbohydrate metabolism
and amino acid metabolism (515). Finally, a study of ponies infected by strongyles
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(nematodes of the families Strongylinae and Cyathostominae) also found reductions in
the abundances of Clostridiales associated with infection; susceptible ponies that
developed more-intense infections demonstrated reductions in the abundances of the
commensal Clostridiales Ruminococcus, Lachnospiraceae, and Clostridium XIVa and in-
creases in abundances of Pseudomonas, Campylobacter, and Bacillus relative to resistant
ponies that developed less-intense infections (516).

Several studies have used animal models of IBD to investigate the impacts of
helminth infection in the context of inflammation. For example, one study investigated
the impact of helminth therapy in the nonhuman primate Macaca mulatta (rhesus
macaque) with chronic idiopathic diarrhea (CID), a condition similar to human ulcer-
ative colitis (517). Researchers treated five juvenile macaques with CID with the
whipworm T. trichiura and found improved fecal consistency and weight gain in four
subjects, despite a lack of establishment of patent infection. Analysis of the bacteria
attached to the intestinal mucosa revealed a decrease in the absolute amount of
bacterial attachment, an increase in Shannon diversity, and significantly different
measures of beta diversity in posttreatment macaques; specifically, those researchers
observed a significant increase in the abundance of the phylum Tenericutes in response
to helminth treatment. Generally, they speculate that helminth treatment increased TH2
responses, including mucus production and epithelial cell turnover, decreasing the
attachment of immunostimulatory bacteria to the mucosa and improving symptoms
(517). Similarly, researchers examined the impact of infecting mice lacking the IBD
susceptibility gene nod2 with either H. polygyrus or T. muris (518). nod2�/� mice
typically display small intestinal abnormalities, including goblet cell defects and colo-
nization by the bacterium Bacteroides vulgatus; after colonization with helminths,
however, the goblet cell defect was corrected, and levels of B. vulgatus fell dramatically.
The inhibition of B. vulgatus was associated with an increase in the abundance of the
family Lachnospiraceae in the class Clostridiales and could be transferred to helminth-
free nod2�/� mice by cohousing. Those authors suggest that the increased mucus
production occurring during helminth infection promotes the growth of Clostridiales
over B. vulgatus (518).

While the majority of studies in animal models have been conducted using nema-
tode parasites, there are some studies using other types of helminths. For example,
while colonization of rats with the tapeworm Hymenolepis diminuta did not alter alpha
or beta diversity, there were distinct differences in the cecal community composition
affecting approximately 20% of the microbiome (519). Specifically, there were signifi-
cant decreases in Turicibacter and significant increases in Peptostreptococcaceae abun-
dances. They also exposed half of the animals to LPS challenge several days before
analysis to assess the impacts of inflammatory challenge in the context of helminth
infection. Interestingly, beta diversity was altered between LPS groups in uninfected
animals, but there was no impact of LPS in helminth-infected rats (519). Further analysis
showed that most of the changes observed resulted from shifts internal to the major
phylum Firmicutes, with increases in the abundances of the class Clostridia and de-
creases in the abundances of the class Bacilli. Importantly, while the worm resides in the
small intestine, these effects were observed in the cecum, indicating the potential for
more than simply local effects of infection (519). Another group analyzed the effects of
infection with the trematode liver fluke Opisthorchis viverrini on the microbiome of
Syrian hamsters, a model for the bile duct cancer that this helminth can induce (520).
That group found that hamsters infected with O. viverrini had an increased diversity of
the gut microbiome, with increases in the abundances of Ruminococcaceae, Lachno-
spiraceae, and Lactobacillus and decreases in the abundances of Porphyromonadaceae,
Erysipelotrichaceae, and Eubacteriaceae (520). Finally, a recent study using a mouse
model of S. mansoni infection found significant reductions in alpha diversity associated
with infection; additionally, researchers observed a significant expansion of the Verru-
comicrobia member A. muciniphila, in addition to increases in the abundances of
members of the Bacteroidales, Coriobacteriales, and certain Clostridiales and decreases
in the abundances of Erysipelotrichia and other Clostridiales (521). Importantly, the

Cross-Domain Interactions in the Microbiome Microbiology and Molecular Biology Reviews

March 2019 Volume 83 Issue 1 e00044-18 mmbr.asm.org 31

https://mmbr.asm.org


microbiota was assessed both before and after the beginning of egg production (28
and 50 days postinfection, respectively), which demonstrated progressive differences in
microbiome composition that specifically accompanied the onset of egg production
and associated intestinal damage and inflammation (521).

There have also been some studies in humans, although these have generally been
observational. One study used 16S rRNA gene sequencing to examine the gut micro-
biomes of rural Malaysians infected with one or more gastrointestinal helminth species
(Ascaris species, Trichuris species, and hookworm) and compared them to those of
uninfected controls, finding that helminth infection was associated with greater diver-
sity of the fecal microbiome (522). Analysis of changes in the community’s predicted
functional potential indicated an enrichment in the abundance of a number of meta-
bolic pathways, including those involved in nucleotides and amino acids. Further
analysis revealed that Trichuris infection specifically was strongly associated with
enrichment in Paraprevotellaceae, and functional potential analysis indicated an enrich-
ment in pathways associated with nucleotide metabolism, cell growth, and cell death
(522). A later study by the same group studied a similar population before and after
antihelminthic treatment and found that reductions in parasite burden were associated
with decreases in Clostridiales and increases in Bacteroidales abundances, which sup-
ported their findings of helminth infection in nod2�/� mice discussed above (518).

In a similar study, another group analyzed the impacts of infection with T. trichiura
alone or in combination with Ascaris lumbricoides on the gut microbiome of Ecuador-
ean children. For children infected with T. trichiura alone and a subset of uninfected
children, a follow-up was performed after curative antihelminthic treatment (523).
Those researchers found no significant differences in microbial composition in children
infected with T. trichiura alone and no differences after antihelminthic treatment.
However, they observed a decreased proportion of Clostridia and reduced microbial
diversity in children with mixed infections, suggesting a specific effect of A. lumbricoides
infection on the microbiome (523). However, in the course of a larger study, Rosa et al.
reanalyzed this data set using their own pipeline; they found associations between
helminth infection and differences in various taxa, including increases in abundances of
Eubacteria, Streptococcus, and the order Lactobacillales (524). In addition, they per-
formed a study investigating the impacts of infection with A. lumbricoides, N. america-
nus, and T. trichiura in populations in both Liberia and Indonesia; a double-blind study
of the impacts of antihelminthic treatment was performed on the Indonesian popula-
tion to study the impact of worm clearance after 2 years (524). They found a number
of associations with specific helminth infections as well as several taxa that were
associated with helminth infection generally in both populations; for example, Lach-
nospiraceae incertae sedis were consistently negatively associated with helminths, while
Desulfovibrionaceae, Olsenella, and Enterococcus were among taxa positively associated
with infection. When studying the impacts of antihelminthic treatment after 2 years,
they found that dewormed microbiota were more similar to infected than uninfected
microbiota, suggesting that there may be lingering effects from helminth colonization
(524).

Another group studied the impacts of gastrointestinal nematodes on the fecal
microbiota of a Sri Lankan population; specifically, the authors examined individuals
with current infection with A. lumbricoides, N. americanus, A. duodenale, and/or T.
trichiura compared to those who were uninfected and those who had recently received
antihelminthic treatment (525). While there was no observed difference in the alpha
diversity of the communities, the authors found an increase in the beta diversity of the
infected and treated groups. Additionally, there were some associations of specific taxa
with infection status: infected subjects demonstrated increased abundances of Lacto-
coccus, Akkermansia, and Verrucomicrobiaceae; uninfected subjects demonstrated an
increased abundance of Leuconostocaceae; and treated subjects demonstrated an
increased abundance of Bacteroides (525). Predictions of the functional potential of the
communities indicated that helminth-infected subjects had downregulated ether lipid
metabolism and apoptosis pathways and upregulated biotin metabolism pathways
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(525). Members of this group have also worked on several studies of experimental
infection with N. americanus in human subjects, generally finding that infection was
associated with minor increases in the microbial richness of the fecal and duodenal
microbiota, particularly in the context of gluten challenge in subjects with celiac
disease, but not with significant impacts on the community structure or abundance of
specific taxa (526–528).

Other studies have studied the impacts of human infection with Schistosoma species
on the composition of the gut microbiome. Such effects are particularly interesting, as
this organism does not reside directly in the gut but resides in the vascular system. One
study examined the impacts of S. haematobium, which resides in the urogenital
vasculature and extrudes eggs into the bladder, on the fecal microbiomes of children
in rural Zimbabwe, where the parasite is endemic (529). Those authors found 21 OTUs
that varied with infection status, although only 5 were robust to multiple-hypothesis
testing, all belonging to the genus Prevotella. Additionally, as all participants were
treated with curative praziquantel at the time of sample collection, the authors per-
formed follow-up at 12 weeks and found that treatment did not significantly impact the
microbiomes of previously infected children at this time point (529). In a similar study,
researchers studied the impact of infection with S. mansoni, which resides in the
mesenteric vasculature and extrudes eggs into the gut, and praziquantel treatment on
the microbiota of children in Cote d’Ivoire (530). They found that children with various
levels of infection intensity were more likely to have an enrichment in the phylum
Proteobacteria and specifically found an association between infection and the genus
Klebsiella. In terms of praziquantel, treatment was associated with higher levels of the
classes Bacilli and Erysipelotrichia after 24 h, and success of treatment was associated
with higher levels of Fusobacteriales both before and after treatment (530).

In general, it seems clear that infection with a variety of both gut-resident and
tissue-resident helminths can have impacts on the composition and function of the gut
microbiota (Fig. 3). However, it is difficult to draw conclusions about specific changes,
and in some cases, different groups have obtained contradictory results; for example,
studies of humans naturally infected with gut-resident helminths have alternately
found increased, decreased, and unchanged microbial diversity associated with infec-
tion (522, 523, 525). This may be due in part to the wide range of study conditions used.
Across the studies, hosts include multiple animal models and various human popula-
tions, while helminths include species that inhabit the small intestine, large intestine,
and vascular system. In addition, these studies utilize a multiplicity of analysis tech-
niques, including different diagnosis strategies, sequencing platforms, 16S rRNA gene
regions analyzed, databases used, and computational pipelines and analytics. Impor-
tantly, the majority of the human studies discussed here analyzed the fecal microbiota,
frequently used as a proxy for the gut community due to the relative ease and lack of
invasiveness of sample collection; however, it may miss changes that occur at the
mucosal level, where gut-resident helminths are likely to reside, as well as differences
between small and large intestinal communities. Despite such factors, some potential
commonalities have arisen: several studies found an enrichment in Lactobacillaceae
during infection of animal models with gut-resident nematodes, both human and
animal studies found enrichment in potentially mucolytic (Mucispirillum, Akkermansia,
and Prevotella) or sulfate-reducing (Desulfovibrionaceae, Desulfocella, and Desulfovibrio)
bacteria, and several studies found evidence for microbiota disturbance persisting after
helminth clearance.

Microbial Composition Can Alter the Course of Helminth Infection

Not only can helminths modify the native microbiota, but the presence or compo-
sition of the gut microflora may actually influence the course of infection with some
helminths. Some of the first hints of such an effect came from studies of germfree
animals. Experiments with germfree mice indicated that the presence of the gut
microbiota has significant supportive effects on the course of infection with H. po-
lygyrus. For example, infected conventional mice developed more adult worms, had
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longer infections, and showed higher mortality rates than germfree mice. In fact, as the
infection progressed, the difference in adult worms harbored by the two groups grew
wider, suggesting that the presence of the microbiota was required for efficient adult
worm survival. However, the germfree mice also developed eosinophilia, intestinal wall
thickening, and pronounced nodule formation in the small intestine in comparison to
conventional mice; this suggests a strong immune response that may have contributed
to reduced worm survival, possibly due to a lack of immunoregulatory influence from
gut microbiota (531).

Follow-up studies from the same group added gnotobiotic mice monocolonized
with a single bacterial species for comparison with conventional and germfree mice.
For example, Chang and Wescott performed a study in which they used an unspecified
Lactobacillus species isolated from conventional mice to create a monoassociated
group (532). These mice appeared to display an intermediate phenotype between
conventional and germfree mice in terms of the development of adult H. polygyrus
worms, nodule development, and parasite egg production. Additionally, increasing the
length of time between monoassociation and infection favored parasite survival, with
parasite numbers similar to those in germfree mice at 2 weeks but increased parasite
numbers in monoassociated mice at 6 weeks (532). Similarly, researchers used the
nematode Trichinella spiralis to infect mice monoassociated with Bacillus mesentericus
or Bacillus subtilis, which do not colonize the small intestine where this parasite resides,
or P. aeruginosa, which can colonize both the small and large intestines (533). Mice
monoassociated with P. aeruginosa displayed an intermediate phenotype, with re-
searchers recovering more adult worms than from germfree mice but fewer worms
than from conventional mice. On the contrary, mice monoassociated with Bacillus
species were similar to germfree mice and contained low numbers of adult worms,
suggesting that proximity between a bacterial species and the parasite is required for
interaction. Both monoassociated mice and germfree mice also displayed eosinophilia
relative to conventional mice, indicating a similar immune response (533). Finally, this
group also demonstrated that the gut microbiota favors the development of another
intestinal nematode, N. brasiliensis; while its larvae appear to migrate through the lungs
at equivalent rates in conventional, monocolonized, and germfree mice, significantly
more adult worms were recovered from the gut of conventional animals (534). The
conclusions of this series of experiments were further supported by a study performed
by a different group using the nematode Ascaridia galli to infect conventional, germ-
free, and monoassociated chickens. As in the above-described studies, rates of parasite
establishment and survival were highest in conventional animals, lowest in germfree
animals, and intermediate in animals monoassociated with either B. subtilis, Bacillus
cereus, or Penicillium (535). Together, data from these studies suggest that even the
presence of a narrow gut microbial community is able to promote parasite develop-
ment and survival.

One issue with such studies is that complete abolishment of the microbial commu-
nity from birth has significant effects on immune system development (115, 117, 143,
536, 537), and thus it is difficult to parse out impacts of the microbes themselves
relative to immunological defects in germfree animals. Therefore, more recent work has
sought to analyze links between members of the gut microflora and helminths in the
context of a healthy, diverse microbial community. For example, in addition to links
suggesting that helminth infection can promote Lactobacillus in mouse models, there
is also evidence that Lactobacillus can promote the establishment of infection with H.
polygyrus (506). Specifically, administration of Lactobacillus taiwanensis to a typically
resistant mouse strain increased the levels of regulatory T cells and nematode estab-
lishment frequencies. Together with this group’s finding that H. polygyrus promotes
Lactobacillus expansion, this indicates a self-reinforcing relationship in which the
presence of Lactobacillus promotes H. polygyrus infection while the parasite increases
the abundance of Lactobacillus (506). The authors of that study suggest that
Lactobacillus-mediated Treg expansion, potentially suppressing TH2 immunity, may be
the mechanism behind the increased susceptibility to H. polygyrus infection (506). In
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support of this finding, another group found that oral administration of either live or
dead Lactobacillus bacteria before infection increased susceptibility to another mouse
parasite, Trichuris muris, and led to reductions of both TH1 and TH2 cytokines (538).

There are a few studies that suggest that some species of helminth depend on the
host microbiota in executing key stages of their life cycles. For example, Hayes et al.
demonstrated that the murine nematode whipworm Trichuris muris may rely on host
microbiota as a developmental cue (539). First, in vitro experiments showed that T.
muris eggs did not hatch unless in the presence of bacterial or yeast cells. To test this
in vivo, that group experimentally reduced the number of bacteria in mice with
enrofloxacin before administration of T. muris eggs, finding a decreased number of
established infections and a strong TH2 immune response (539). Additionally, they
performed the same experiment on mice lacking an adaptive immune system and
found a similar reduction in parasite establishment in the gut, suggesting that acquired
immunity and the enhanced TH2 response are not solely responsible for this effect. It
is possible that the requirement for the presence of microflora for hatching may be an
adaptation evolved to ensure that parasite eggs hatch in the bacterium-lined cecum
and colon (539). Similarly, another group found an altered course of intestinal schis-
tosomiasis upon depletion of the gut microflora (540). After administering antibiotics
and antifungal drugs to mice infected with S. mansoni, which resides in the venules
surrounding the gastrointestinal tract and excretes eggs into the gut lumen, that group
found that gut inflammation, intestinal granuloma formation, and egg excretion were
all reduced compared to untreated mice. Interestingly, liver pathology and worm
fecundity (egg production) were unchanged, suggesting specific local effects of the gut
microflora that promote successful egg translocation (540). Furthermore, researchers
have found that immunoregulation induced by helminth infection is at least partially
influenced by the intestinal microflora. Mice infected with H. polygyrus showed reduced
allergic airway inflammation in response to a dust mite extract compared with unin-
fected controls, but this effect was not seen in mice that were first treated with
antibiotics to reduce the numbers of gut bacteria despite a similar number of adult
worms establishing infection (541). Importantly, the effect could be restored by rees-
tablishing a normal microbiota, via either oral gavage of cecal contents from or
cohousing with untreated mice (541).

Finally, while most of this work focuses on the relationship between the host
microflora and infectious nematodes, there are also cases in which microbes associated
with the parasites themselves are relevant to the course of disease. Specifically, filarial
worms harbor endosymbiotic bacteria of the genus Wolbachia, and a significant part of
the pathology caused by these parasites occurs due to the host immune response to
Wolbachia rather than to the nematodes themselves (542–547). Additionally, most
filarial worms are unable to survive without their Wolbachia symbionts, presenting a
target for antibiotic therapy rather than antihelminthic drugs to eliminate infection
(543, 544, 546).

Generally, this work suggests that the gut microflora can play a significant role in the
establishment and maintenance of helminth infections (Fig. 3). Gut-resident or gut-
proximal helminths appear to survive and reproduce more efficiently in the presence of
a diverse community of gut bacteria, although monoassociation experiments demon-
strate that even microflora lacking diversity can be utilized by parasites to promote
infection. Given that humans have been infected with helminths for most of their
existence and the lack of germfree hosts in nature, it is possible that helminths have
coevolved to take advantage of the presence of the gut microflora for their successful
development. Potential interactions include the use of bacterial signals as helminth
developmental cues, bacterium-mediated Treg activation allowing for effective coloni-
zation despite TH2 polarization, or even the consumption of bacterium-produced
metabolites.

Summary

The great variety of helminth and host species used in the studies described here
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makes it difficult to draw specific conclusions about the effects of a given organism, but
together, they paint a compelling picture of both bipartite and tripartite interactions
between resident gut commensals, the host immune system, and helminth infections.
The presence of gut microflora appears to support infection with certain helminths,
including via direct interactions between the microbiota and helminths to promote life
cycle progression or reproduction, immunomodulation to reduce the host response to
helminth infection, and potentially other mechanisms. At the same time, infection with
a variety of helminths appears to alter the composition and potentially the function of
the gut microflora, although whether this occurs via local interactions between para-
sites and commensals, systemic immune changes favoring the proliferation of certain
gut bacterial species, or a combination of the two remains unclear. There is some
evidence that infection with helminths may impact the diversity of the gut microflora,
although the directionality of this impact varied; however, whether or not overall
diversity was altered, infection was frequently able to alter the abundances of a
relatively large proportion of microbiome members.

These observations give rise to a number of interesting research directions. In terms
of helminth infection prevention, there is evidence that microbiome depletion can
reduce infection by or reproduction of certain helminth species. It would be useful to
know how widespread this effect is across different clinically relevant helminths and to
elucidate specific mechanisms, such as egg hatching in T. muris or egg excretion in S.
mansoni, by which the course of infection is altered. Additionally, these effects have not
yet been studied in humans, offering another point of study. There may also be specific
bacterial taxa that interact with and promote infection with helminths, as seen in the
mutually supportive relationship between H. polygyrus and Lactobacillus in mice.
Identifying such interactions in other helminth infections could allow for the develop-
ment of targeted interventions that might have lesser effects than microbiome abol-
ishment, which can reduce microbial diversity and promote dysbiosis after recovery.

On the other side, the studies indicating the potential for helminths to alter the gut
microbiome have implications for understanding the pathology of a number of ne-
glected tropical diseases and for identifying potential side effects of helminth therapies
for autoimmune disorders. For example, are helminths themselves directly responsible
for the full extent of immunomodulation that occurs, or might they also modulate the
gut microbiota to promote immunoregulatory bacteria? On a related note, does
microflora alteration occur due to local interactions between gastrointestinal helminths
and gut flora, as a consequence of a systemic immune alteration resulting from
helminth infection, or both? While many of the immunological effects of helminth
infection are well known, the exact mechanisms of the interactions between host,
commensal, and helminth remain unclear. Studies of the impacts of non-gut-resident
helminths, such as filarial worms and schistosomes, on the microbiota as well as
profiling gut communities both proximal and distal to the site of gastrointestinal
helminth infection may help to answer these questions.

Additionally, given that there is evidence from both human and animal studies that
microbiome changes can persist even after parasite clearance, there is a question of
what effect these changes might have on host health. If helminth infection alters the
composition of the gut microflora, it leaves open the possibility of dysbiosis, inflam-
mation, or opportunistic infections as potential sequelae, even after the parasite
infection itself is treated. Especially given the interest in helminth therapy, it will be
important to investigate and learn how to mitigate potential negative side effects of
parasite-induced microbiome alterations; additionally, identifying specific helminth
products or components that can promote beneficial immunomodulatory effects with-
out requiring infection with live parasites is an important direction of research (548,
549). Finally, while many studies were able to identify changes in the composition and
predicted function of the microbiota during helminth infection, full metagenomics and
metatranscriptomics will be important in understanding the true functional differences
in the microbiota, including nonbacterial members, under these conditions.
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VIRUSES

There are an estimated 1031 viruses on earth, making them the most abundant and
widespread biological entities on the planet (550, 551). Like bacteria, viruses are also
ubiquitous members of the human ecosystem. The entire collective of eukaryotic and
bacterial viruses (bacteriophages), including double-stranded DNA (dsDNA), single-
stranded DNA (ssDNA), and RNA viruses, has been termed the “virome.” Significant
effort has been devoted to characterizing this community as well as its role in shaping
the microbiota. However, unlike for bacteria and fungi, there is no universal marker
gene that can be utilized to study bacteriophage or viruses as a whole, so metagenomic
approaches are frequently used. This review focuses mainly on work examining phage-
microbiome interactions, as most of the viruses found in and on the human body have
been determined to be phage based on metagenomic sequencing and transmission
electron microscopy (552–556). Phage populations of numerous body sites, including
the intestine, mouth, skin, respiratory tract, and urinary tract, have been profiled,
although the intestinal virome has been the most widely characterized (552, 557–561).
Additionally, in many cases, eukaryotic viruses exist as stable members of the human
virome, and latent infections can play an important role in host health (562). Finally,
RNA viruses isolated from human fecal samples were mostly plant RNA viruses, sug-
gesting that the RNA virus portion of the intestine is derived from diet (563).

The Makeup of the Human Virome

The approximately 1015 phages that inhabit the human intestine are predominantly
dsDNA viruses in the Myoviridae, Podoviridae, and Siphoviridae families of the order
Caudovirales and ssDNA viruses of the family Microviridae, constituting an estimated
1,200 viral genotypes (Fig. 1) (552–554, 564, 565). The Caudovirales and Microviridae
phages have an average genome size of 30 kb and exhibit both lytic and temperate
lifestyles, although temperate phages dominate the human gut (552–554). The tem-
perate lifestyle often leads to the integration of phages into bacterial hosts as either
episomes or chromosomal prophages. An analysis of prophages in both Gram-positive
and Gram-negative bacteria found prophages with lengths of 10 kb or more in 71%
(40/56) of the bacteria examined (566). These prophages are replicated along with
bacterial DNA and expand the genetic repertoire of the bacterium in which they reside,
accounting for up to 20% of the bacterial genome (567). Multiple environmental
stressors, including reactive oxygen species (ROS), reactive nitrogen species (RNS), UV
radiation, or antibiotics, can lead to the induction of the prophage; this results in a lytic
cycle, replication, and escape of the phage progeny and bacterial host death (568).
Thus, phages in the human virome have the ability to modulate bacterial populations
through a lytic lifestyle or can potentially provide a bacterium with novel traits while
integrated as a prophage (Fig. 4). Widespread lysis of commensal bacteria through
prophage induction could potentially facilitate colonization by pathogenic bacteria in
formerly colonized niches (Fig. 4). Findings outlining the composition of phage com-
munities have also revealed interesting trends in the establishment and steady-state
dynamics of the human intestinal virome.

Intriguingly, a recent study identified a novel type of bacteriophage termed
crAssphage, a name derived from the cross-assembly tool used to assemble the first
97-kb crAssphage genome from metagenome samples. crAssphages are thought to be
the most prevalent human-associated virus and have been found to comprise up to
90% of reads from human fecal virome metagenomes (569). The bacterial host range of
these phages is still not understood, but early investigation suggests that crAssphages
may be associated with the bacterial phylum Bacteroidetes, and they are thought to
potentially form a family within the order Caudovirales (570). Initial studies found that
80% of the predicted crAssphage proteins did not have matches in reference databases,
but recent efforts have had more success in characterizing these proteins (570).
crAssphages have been propagated in vitro and imaged for the first time, presenting a
novel opportunity to study these phages in the laboratory setting (571). Guerin et al.
further identified novel crAss-like phages from metagenomic data sets and proposed
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taxonomic assignments for these bacteriophages (571). While these phages remain
understudied, their widespread abundance in human microbiota metagenomic data
sets suggests that crAssphages may have an important role as a constituent of the
human virome.

Much like the development of the bacterial community of the human microbiome,
phages are partially inherited from the mother, and populations undergo a maturation
process over the lifetime, forming a steady-state community of phages known as the
“phageome.” From birth to 2 years of age, the bacteriophage populations of infants
transition from higher to lower diversity (572). During this time, there is also a shift in
the relative abundance of phage populations, highlighted by a decrease in Caudovirales
and an increase in Microviridae abundances (572). The changes in bacteriophage
composition from infancy to adulthood are not well characterized and remain an area
to be explored. In adulthood, phages of the families Myoviridae, Podoviridae, and
Siphoviridae comprise a majority of the taxonomically identifiable viruses, while Micro-
viridae make up a smaller but significant proportion (553, 554). Among healthy adults,
the intestinal phageome exhibits high interpersonal variation, with individuals display-
ing distinct phage compositions. In contrast, in the same individuals, intrapersonal
variation over time was comparably low. Ninety-five percent of viruses were retained
over a 1-year study, similar to the gut bacterial population (28, 553). These findings
suggest that humans harbor individual but highly stable intestinal phageomes.

FIG 4 Outline of prominent virome-bacterium interactions that shape the community dynamics and
function of the host microbiota.
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The Human Virome in Gut Dysbiosis and Bacterial Coinfections

It is well established that the bacterial and even fungal members of the microbiome
play a key role in human health and disease, but the role of the virome is less
understood. Attempts to characterize the virome of healthy individuals have naturally
led to studies of how this community changes during disease states, including the role
of phages and eukaryotic viruses during bacterial infection and host microbiome
dysbiosis. Studies have revealed that the human virome is altered during disease states
and plays a role in bacterial pathogenicity but can also be protective against bacterial
infection.

While the role of bacteria has been examined in the context of inflammatory gut
dysbiosis, we are just beginning to learn about the interplay between conditions such
as IBD and the virome (573). For example, Manrique et al. analyzed metagenomic data
sets of intestinal bacteriophages from 62 healthy subjects. Their study identified 155
bacteriophages that were determined to be part of the “healthy gut phageome,”
although these represented only 4% of the estimated phage community. Of the 155
phages, 132 “common” bacteriophages were found in 20% to 50% of individuals, and
a further 23 “core” bacteriophages were observed in �50% of subjects (565). Interest-
ingly, this core phageome was depleted in subject groups with IBD, suggesting that the
intestinal phageome may play a role in maintaining a healthy gut (565). However, this
could also result from a reduction in bacterial host diversity common to IBD (574).
Previously, studies of the enteric virome in IBD had observed that the gut mucosa of
Crohn’s disease patients harbored higher numbers of virus-like particles (VLPs)
(2.9 � 109) of the order Caudovirales than healthy patients (1.2 � 108) (556). Further
metagenomic evaluations of IBD patients confirmed this observation, finding that the
disease state is characterized by greater interpersonal variation in virome composition
along with an increased abundance and richness of Caudovirales bacteriophages but
less overall diversity of the virome (575–577).

Additionally, metagenomic analysis of both control and colitis-induced mice has
revealed responses of the virome to inflammation in a more controlled setting. In mice
with colitis, there was an expansion of phages that infect potential pathogens such as
Proteobacteria, which are known to expand during gut inflammation and IBD (577, 578).
Phages of Streptococcus and Alistipes bacteria were more abundant in the colitis group,
but interestingly, the levels of the bacterial hosts did not change with colitis (577). This
suggests that increased levels of a phage are not always dependent on elevated host
abundance; instead, lysogenic phages may be induced by inflammation leading to
replication and excision of phage. One of the most significant findings from this study
is the overlap in phage metagenomes between the mouse model and human studies,
suggesting that this murine model is suitable for studying phage dynamics of human
IBD (576, 577). Together, data from these studies suggest that inflammatory disease in
the gut can lead to a defined shift away from a healthy virome, and IBD-specific shifts
in phages may reflect the expansion of pathobionts associated with disease or the
induction of conditions that favor a lytic lifestyle.

Human disease provides an opportunity to study not only how the virome shifts in
response to a perturbation but also how viruses can play an active role in facilitating
and exacerbating bacterial infections. For example, the highly unique environment of
the cystic fibrosis (CF) lung drives selection and rapid evolution of bacterial pathogens
and their phages through various ecological pressures. P. aeruginosa is the most
common pathogen of the CF lung, and the density of this bacterium is positively
correlated with densities of its phages (579); the phages play a role in the ability of P.
aeruginosa to survive and thrive within the CF lung, highlighting the importance of the
human phageome during bacterial infection (579). A subset of phages, known as LES
phages due to their identification in the Liverpool epidemic strain of P. aeruginosa, have
been shown to integrate as prophages and confer fitness advantages to their hosts.
Isolation of a polylysogenic strain of P. aeruginosa (LESB58) from a CF patient allowed
researchers to determine the fitness advantages associated with the various prophages
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through competition assays in a rat lung infection model; by using signature-tagged
mutagenesis of 3 of the prophages in the LESB58 genome, they found that a disruption
of these prophage genes greatly reduced the competitiveness of strains in vivo (580).
Moreover, growth of P. aeruginosa in the presence of lysogenic LES phages in an
artificial sputum medium led to the development of mutations promoting fitness,
frequently through prophage integration into genes such as those coding for type IV
pilus machinery (581). This was in agreement with previous studies which showed that
mutations in type IV pilus-associated genes increased the fitness of P. aeruginosa in the
murine lung, potentially by providing immunity to superinfection by other phages that
infect via this molecule (582).

Additionally, P. aeruginosa can utilize filamentous bacteriophages during the biofilm
life cycle. For example, phages produced by the bacteria can associate with polymers
to create a “liquid crystal” extracellular matrix that enhances adhesiveness and protec-
tion from desiccation and antibiotics (583). Counterintuitively, these phages can also
contribute to the biofilm by inducing cell death in certain populations, specifically
those at the center of microcolonies; this may serve as a form of directed cell death
promoting the dispersal of small-colony-variant cells from the biofilm (584, 585). In fact,
a strain of P. aeruginosa lacking the filamentous phage Pf4 formed abnormal and
unstable biofilms, and mice infected with this strain survived longer that those infected
with the wild-type counterpart with an intact phage (585). Phage production may be
linked to the anaerobic growth mode of P. aeruginosa biofilms in vivo, as prophage
genes were found to be strongly upregulated during anaerobic respiration of P.
aeruginosa (586).

Phages can also play a role in facilitating the pathogenicity of ordinarily commensal
bacteria by providing novel routes for infection. The bacterium Streptococcus mitis is
typically an oral commensal in humans, but it can also cause infective endocarditis. Two
proteins encoded by lysogenic phage SM1 play a direct role in the binding of S. mitis
to platelets in the bloodstream, leading to endocarditis (587, 588). The phage proteins
PblA and PblB attach to the cell wall of S. mitis, where they mediate binding of the
bacteria to platelets; the enhanced platelet binding then increases the pathogenicity of
S. mitis in an endocarditis mouse model (588). Viral metagenomic and 16S rRNA gene
analyses have revealed that both the phage and its host are highly prevalent within the
human oral cavity, and SM1 can be induced by dietary items such as soy sauce, leading
to increased levels of PblA and PblB (589, 590).

Similarly, integrated prophages can confer traits that increase the virulence of many
pathogenic bacteria. Pathogenic strains of Escherichia, Bacillus, Pseudomonas, and
Burkholderia all contain greater numbers of prophages within their genomes than their
benign relatives of the same species (591). In pathogenic E. coli strains, several phages,
including Stx, Stx2, �, and CP-933C, encode virulence factors and toxins (592–594). The
human pathogen Vibrio cholerae derives its virulence from two phage components, CTX
and TCP, which arise from the phages CTX� and VPI� (595–597). However, sometimes
phages can confer traits to bacterial symbionts that are beneficial to the host. One
striking example is the tripartite interaction between the eukaryotic pea aphid Acyrtho-
siphon pisum, its hemocoel-dwelling bacterial symbiont Hamiltonella defensa, and the
bacteriophage APSE-3. This aphid is often parasitized by the wasp Aphidius ervi, which
deposits eggs within the aphid hemocoel that kill the host when they pupate (598).
However, H. defensa can prevent development of the wasp eggs, sparing the aphid
host, but only when it contains the APSE-3 prophage, which contains the gene for the
toxin required to kill the wasp eggs (599).

Although phages make significant contributions to the pathogenicity of many
bacteria, there is mounting evidence that the host eukaryotic virome may provide
protection from bacterial infection through activation of the host immune system and
direct interaction with pathobionts (600). Mouse models have been used to demon-
strate the ability of latent murine herpesvirus (MHV68) or cytomegalovirus (CMV)
infection to activate macrophages and increase basal immune function in a manner
that provides protection from bacterial challenges with Listeria monocytogenes and
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Yersinia pestis (Fig. 4) (601). The activation of basal immune function to protect against
bacterial pathogens was further examined by MacDuff et al. Their work showed that in
immunodeficient mice, chronic MHV68 infection increased basal levels of gamma
interferon (IFN-�) and its effector molecules, allowing for rapid clearance of L. mono-
cytogenes (602). Additionally, murine norovirus (MNV) infection was found to restore
intestinal physiology and immune function in germfree or antibiotic-treated mice in an
IFN-�-dependent manner, allowing the MNV-infected mice to cope with challenges
from chemically induced intestinal injury and C. rodentium infection (603). This work
highlights the ability of the mammalian virome to maintain intestinal health through
activation of the host immune system (Fig. 4).

It has also been postulated that the virome can protect the host from bacterial
infection by serving a barrier function. Phage concentrations are increased in the mucus
layer of humans, mice, and marine invertebrates, which results from a weak adherence
between Ig-like domains of phage capsids and the glycan residues of mucin. This layer
then provides a site for lytic phage infection of bacteria, which protects the underlying
epithelial cells. In an in vitro model, the presence of phage increased bacterial cell death
and decreased epithelial cell mortality in a mucus-dependent manner (604). Further
research into this model suggests that the interaction with mucin reduces diffusive
motion, increasing the number of encounters with potential bacterial prey on the
mucus (605). Together, the results present a model for phage-driven, non-host-derived
immunity of mucosal surfaces termed by those authors the “bacteriophage adherence
to mucus” (BAM) model (Fig. 4) (604–606).

The growing body of research on the virome during health and disease states is
transforming our understanding about the role of viruses in the human body. Studying
viral community changes during IBD has led to insights into a potential role for phages
during gut dysbiosis and the possibility of identifying specific phages as biomarkers of
disease. Furthermore, it is commonly observed that phages can facilitate the virulence
of bacterial infections, but the role of eukaryotic viruses and phages as potential players
in host immunity is now being appreciated.

Horizontal Gene Transfer and Antibiotic Resistance in the Microbiome

Horizontal gene transfer (HGT) represents a route for the dissemination of genes
between bacteria, including genes coding for favorable fitness-related traits, virulence
factors, and antibiotic resistance. There are several ways in which phages are involved
in HGT in the microbiome: transduction, by which phage mediates the transfer of
bacterial DNA from one bacterium to another; specialized transduction, where pro-
phage excision involves packaging of both the prophage and adjacent host genes; and
lysogenic conversion, during which a prophage causes a phenotypic change in the host
cell (607). Analyses of HGT events across metagenomic data sets have demonstrated
that human-associated bacteria exhibit far more gene transfer than those bacteria not
associated with humans. After examining gene transfer events in different ecological
niches, Smillie et al. suggested that HGT is enriched in bacterial communities inhabiting
specific body sites, such as the gut (608). The rich density of bacteria and phage within
the human microbiome makes it a potential hot spot for phage-mediated HGT of
virulence and antibiotic resistance genes (ARG).

Antibiotic resistance genes are present in bacterial populations within the human
intestinal microbiome as well as the human gut virome (609, 610). In vitro studies of
commensal and pathogenic bacteria have found that many species are capable of
phage-mediated gene transfer (595, 611–614). While HGT is normally limited to transfer
within a species, some phages are capable of transferring virulence and antibiotic
resistance genes between bacterial species and even genera (Fig. 4) (612, 615). For
example, strains of Lactobacillus gasseri contain multiple integrated prophages, which
can transduce both other strains of L. gasseri and strains of L. acidophilus (611). This
expands the possibilities for the transfer of genes to opportunistic pathogens residing
within the human microbiome, resulting in more-challenging bacterial infections. The
transfer of virulence-, resistance-, and fitness-enhancing genes via phage has also been
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shown to occur in hosts infected with S. aureus, E. coli, P. aeruginosa, and S. enterica
serovar Typhimurium (568, 579, 616). In one example in a moth larva model, S. aureus
phage �11 was released from a subpopulation of lysogenized cells, and these phages
then infected neighboring susceptible bacteria that contained a resistance gene. These
newly infected bacteria underwent cell lysis, and some of the resulting �11 phage
particles packaged the resistance gene of the lysed neighbors and transduced mem-
bers of the lysogenic population, thus providing them with novel resistance (616).
Those authors termed this process “autotransduction” and postulated that it may
increase the fitness of a bacterial population through the acquisition of beneficial genes
of neighboring populations (616).

Many phages carrying virulence and resistance genes reside in bacteria as pro-
phages. Some species of bacteria carry prophages that can undergo spontaneous
induction into lytic growth; for example, L. gasseri contains phage that can undergo
spontaneous induction at fairly high levels, which could contribute to HGT in human
gastrointestinal and vaginal microbiota (611). However, in many species, induction of
prophages to excise from their host and infect other bacteria occurs through environ-
mental or host triggers, including UV radiation, antibiotics, hydrogen peroxide, ROS,
and, more broadly, SOS response activation (Fig. 4) (568, 617–619). Recent work has
shown that inflammation-induced production of ROS triggers the SOS response, lead-
ing to subsequent prophage induction and HGT of a phage-encoded virulence factor
(568). Within the mouse gut, S. enterica serovar Typhimurium triggers inflammation,
which leads to the production of ROS and RNS; these trigger the S. enterica SOS
response, in turn activating the tum antirepressor of prophage induction, thus allowing
for the lytic induction of the SopE� prophage. The new phage progeny then infect
naive S. enterica and through lysogenic conversion transfer the phage-encoded viru-
lence factor SpoE (568). Therefore, the host inflammatory response to bacterial infec-
tion may contribute to horizontal gene transfer by phages in the microbiome (Fig. 4).

Antibiotics are powerful therapeutic tools that have profound effects on the human
microbiome, including the induction of prophages leading to HGT and the potential
spread of antibiotic resistance (Fig. 4) (620, 621). For example, the Stx-encoding
prophages in pathogenic Shiga toxin-producing E. coli (STEC) were shown to be
induced by treatment with the fluoroquinolone antibiotic ciprofloxacin (622). In mice,
ciprofloxacin triggered not only prophage induction but also transmission of Stx phage
to naive bacteria. Ciprofloxacin treatment increased Stx transductants and Stx produc-
tion, resulting in more-severe STEC infection and ultimately a significant increase in
mortality of the mice (622). This represents one of the challenges of treating enteric
infections, as antibiotics can exacerbate ongoing infections by inducing prophages and
spreading virulence. Later experiments in the murine intestine showed that antibiotic
treatment can increase potential phage-bacterium interactions within the microbiome
as well as enrich the enteric population of phages for carriage of traits, including
resistance to the antibiotic used as well as to other antibiotics (621). Naive bacteria that
were infected ex vivo with phages from antibiotic-treated mice obtained higher levels
of resistance than phages from non-antibiotic-treated mice, suggesting that antibiotic
resistance in the intestinal phageome can be enriched by drug treatment and has the
potential to provide functional benefits to members of the microbiome through HGT
(621). However, it is possible that the contribution of phages to ARG transfer is
somewhat overestimated due to use of lax metagenomic data annotation for ARG
databases, bacterial DNA contamination, and unverified resistance annotations (623).

There is no doubt that phages play a role in the mobilization of virulence and
resistance genes through HGT. Through transduction and lysogenic conversion, phages
are able to disseminate genes and modulate the functional capacity of the microbiome.
Intriguing research suggests a role for phages in liberating DNA for the process of
natural transformation through bacterial lysis, further implicating the role of phages in
HGT (624). Factors including antibiotics and host inflammation have also been shown
to impact phage-bacterium interactions within the context of the microbiome (Fig. 4).
Together, these findings reveal the importance of phage-mediated HGT within the
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microbiome and its impact on host health. Analyzing metagenomic data sets for HGT
events has been shown to be a powerful approach for understanding the dynamics of
gene flow in the context of the human microbiome, and future studies should aim to
utilize these analytical techniques to better understand the role of bacteriophage in
HGT within the human microbiome (608, 625).

Phage Therapy: a Weapon against Antibiotic Resistance?

Since Félix Hubert d’Hérelle coined the term “bacteriophage” in 1917, researchers
have been experimenting with utilizing phages for the treatment of bacterial infections
in humans (626). In a summary of this early work, d’Hérelle articulated enthusiasm for
the possibility of treating deadly bacterial infections such as V. cholerae, septicemic
Staphylococcus, and Y. pestis. Concluding his report, d’Hérelle recognized that extensive
research will be required to fully demonstrate the efficacy of phage therapy (626).
Almost one century later, the field of phage therapy finds itself in a similar position:
excited over the possibility of a novel treatment for bacterial pathogens but in need of
more clinical trials in order to understand the efficacy and safety of bacteriophages as
treatments. The discovery of antibiotics almost completely diverted attention away
from phage therapy research in the United States, although bacteriophages have still
been used and developed as therapies in Eastern Europe (627). However, the current
antibiotic resistance crisis is weakening our antibiotic arsenal, and focusing more
attention on the potential utilization of bacteriophages may be beneficial in clinical
practice to combat multidrug-resistant (MDR) bacterial infections (628, 629). Recent
studies have begun to evaluate the safety, efficacy, and possible role of phage therapy
in treating bacterial infections.

While there are currently no FDA-approved bacteriophage treatments for bacterial
infections in humans, there has been research into efficacy and safety in animal models
as well as a limited number of cases involving humans. Animal models have shown
efficacy when utilizing lytic bacteriophage treatments as prophylaxis or following
symptoms for infections involving K. pneumoniae, Enterococcus faecium, V. cholerae, E.
coli, C. difficile, S. aureus, and P. aeruginosa (Fig. 4) (630–636). In these studies, treatment
with lytic phage showed positive health outcomes that could match or exceed those of
traditional antibiotic therapies or enhance treatment efficacy when combined with
antibiotics. Furthermore, research has shown that phage therapy can succeed in
treating antibiotic-resistant Enterococcus infections in a mouse model, supporting its
potential benefit in a world of increasing resistance to current drugs (631, 637).

While results from animal models have suggested that bacteriophages are able to
successfully treat bacterial infections, there is far less evidence for phage-based treat-
ments in humans. When used to treat acute V. cholerae infection in humans, bacterio-
phages displayed no clinical efficacy, compared to the traditional antibiotic therapy
(tetracycline), which was successful in treating the infection (638). Additionally, more
recent clinical applications of phage therapy were unsuccessful in treating E. coli
gastrointestinal infections in humans while also highlighting the need for more highly
targeted phage cocktails to be used in treatment (639). However, despite these failures,
phage therapies are generally considered to be safe, and studies have reported no
adverse effects related to phage treatment (640–643). Another benefit observed was
that unlike antibiotics, which have a broad effect range and can cause intestinal
dysbiosis, phage therapies are much more targeted and can preserve the integrity of
the host microbiome (632, 642). Despite the lack of widespread use, in the United States
there have been recent case reports in which experimental phage therapy was admin-
istered to patients as a last resort when infections were not responsive to antibiotic
therapy. In these limited reports, administration of phage cocktails was associated with
resolution of serious bacterial infections (644, 645). In the United Kingdom, a controlled
study of patients with drug-resistant P. aeruginosa ear infections showed significant
improvement in patients receiving bacteriophage therapy compared to placebo (641).
While these cases showcase the potential power of phage therapies, controlled clinical
studies are still required before such treatments become mainstream.
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The use of bacteriophage therapy is now evolving beyond the idea of using lytic
phages to kill bacteria. Instead, researchers are devising ways of using phages to
sensitize bacteria to antibiotics in order to enhance their efficacy and circumvent
certain mechanisms of resistance. Pioneering work by Lu and Collins utilized a genet-
ically modified lysogenic phage of E. coli that was able to modulate antibiotic efficacy
in vivo through the regulation of gene networks involved in antibiotic sensitivity (646).
Researchers increased the lethality of several antibiotics by suppressing the bacterial
SOS response through a phage-borne lexA3 gene, thus opening the possibility of
utilizing engineered lysogenic phages as adjuvants to increase antibiotic efficacy in
treating bacterial infections (646). Although not intended for use in vivo, Edgar et al.
proposed a method to resensitize bacteria to antibiotics using engineered phages: to
combat drug resistance developed through mutations in bacterial genes, phages
modified to contain the sensitive version of the resistance genes were used to lysog-
enize bacteria (647). In this case, a sensitive gyrA gene was introduced via phage to a
gyrA mutant E. coli strain that was resistant to the quinolone nalidixic acid. Upon
lysogeny with the phage carrying a sensitive gyrA gene, the E. coli strain became more
susceptible to nalidixic acid (647). In a similar vein, a separate group used phages to
deliver a CRISPR-Cas system to target and destroy antibiotic resistance plasmids within
bacteria to increase the effectiveness of antibiotic therapies (648). Additionally, Chan et
al. found that exposing MDR P. aeruginosa to both bacteriophage and antibiotics can
help to overcome resistance mechanisms (649). Their MDR P. aeruginosa strain attained
resistance through an efflux pump, which is the same system that the lytic phage
OMK01 uses to bind to and infect the bacteria. Losing a component of the efflux pump
in the bacteria made the bacteria susceptible to tetracycline but resistant to OMK01;
when the efflux system was functional, the bacteria were tetracycline resistant but also
sensitive to phages (649). This trade-off displays the potential use of combined anti-
biotic and phage therapy to target MDR bacteria in novel ways. Together, these
findings represent a novel method for utilizing phage to enhance the efficacy of
antibiotics for treating bacterial infections.

Although phage therapy provides a novel method of killing compared to that of
antibiotics that may circumvent problems with MDR bacterial infections, bacteria also
possess defenses against phages that present potential roadblocks to developing
phage therapies. Bacteria can develop a number of resistance mechanisms against
phages, including prevention of phage attachment and subsequent DNA injection,
restriction-modification and CRISPR-Cas systems to destroy phage genomic DNA, and
abortive infection by which an infected bacterium sacrifices itself to prevent phage
replication and further infections. These systems, along with strategies employed by
phages to circumvent bacterial defenses, are described in detail elsewhere (650–652).
The results of research done in animal models as well as some intriguing case reports
show promise for the future of phage therapy, although more controlled and targeted
human trials are needed. Furthermore, utilizing phages as an engineerable tool to treat
MDR infections could play an important role in combating the antibiotic resistance
crisis.

Summary

Study of the virome is limited and mainly focused on the intestine and phages.
Unlike bacterial and fungal studies, there is no universal marker or phage equivalent for
the 16S rRNA gene or ITS markers. This makes characterization of viral communities
difficult and heavily dependent on metagenomic sequencing, which is limited by the
low number of viral sequences in databases; for example, there are 2,040 complete
Caudovirales genomes in the NCBI database. Thus, a majority of sequences from these
metagenomic studies cannot be classified and are from unknown viruses, the “viral dark
matter.” The recent identification of crAssphages as the most prevalent component of
the human virome is an example of how much of this field remains to be explored and
presents an opportunity to uncover the role of these bacteriophages in the context of
the human microbiome. In addition, challenges remain in collecting viral DNA without
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introducing contamination and in obtaining sufficient quantities for metagenomic
analysis, and culture-based work is extremely limited due the unknown host range of
most phages. In addition to taxonomic characterization, there is a substantial knowl-
edge gap in understanding the interactions between the virome and the microbiome
and how these interactions may impact human health and disease. Research has shown
that gut dysbiosis can lead to a shift away from a core phageome and that phages are
capable of increasing pathogen virulence and drug resistance through horizontal gene
transfer. However, it also appears that the human virome may be able to help prevent
bacterial infection and maintain health. The role of phages in the clinical setting has
recently generated interest to help combat the growing threat of antibiotic resistance,
leading to the development of new and creative strategies to potentially utilize phages
in the treatment and prevention of MDR bacterial infections.

CONCLUSION

While dominated by bacteria, the microbiome is increasingly recognized as a rich
community that includes archaea, fungi, viruses, and sometimes eukaryotic parasites.
All of these players can impact the eukaryotic host as well as interact with each other in a
variety of ways, ranging from symbiotic cooperation to antagonistic competition. As we
recognize the importance of these interactions, we must utilize multi-omics approaches
inclusive of the entire host-associated community, as looking at only certain communities
in isolation limits the conclusions that can be drawn. For example, from one perspective,
Lactobacillus species can be associated with host health, promoting immunotolerance
toward the microbiota and colonization resistance against potential pathogens such as
Candida; however, studies of helminths and viruses have revealed that Lactobacillus species
may actually promote helminth infection or contribute to phage-mediated horizontal gene
transfer, which can have negative impacts on the host. Moving forward, we encourage the
increased use of metagenomics, metatranscriptomics, and metaproteomics to survey the
full diversity of the microbiota, the interactions of its members, and its function in promot-
ing health or contributing to disease states.
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2014. Formic acid and acetic acid induce a programmed cell death in
pathogenic Candida species. Curr Microbiol 69:303–310. https://doi
.org/10.1007/s00284-014-0585-9.

247. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer
RJ, Wells JM. 2010. Regulation of human epithelial tight junction
proteins by Lactobacillus plantarum in vivo and protective effects on
the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298:
G851–G859. https://doi.org/10.1152/ajpgi.00327.2009.

248. Karimi S, Jonsson H, Lundh T, Roos S. 2018. Lactobacillus reuteri strains
protect epithelial barrier integrity of IPEC-J2 monolayers from the
detrimental effect of enterotoxigenic Escherichia coli. Physiol Rep
6:e13514. https://doi.org/10.14814/phy2.13514.

249. Yu Q, Yuan L, Deng J, Yang Q. 2015. Lactobacillus protects the integrity
of intestinal epithelial barrier damaged by pathogenic bacteria. Front
Cell Infect Microbiol 5:26. https://doi.org/10.3389/fcimb.2015.00026.

250. Mujagic Z, de Vos P, Boekschoten MV, Govers C, Pieters HH, de Wit NJ,
Bron PA, Masclee AA, Troost FJ. 2017. The effects of Lactobacillus
plantarum on small intestinal barrier function and mucosal gene
transcription; a randomized double-blind placebo controlled trial. Sci
Rep 7:40128. https://doi.org/10.1038/srep40128.

251. Zhao H, Zhao C, Dong Y, Zhang M, Wang Y, Li F, Li X, McClain C, Yang
S, Feng W. 2015. Inhibition of miR122a by Lactobacillus rhamnosus
GG culture supernatant increases intestinal occludin expression and
protects mice from alcoholic liver disease. Toxicol Lett 234:194 –200.
https://doi.org/10.1016/j.toxlet.2015.03.002.

252. Plantinga TS, van Bergenhenegouwen J, Jacobs C, Joosten LAB, van’t
Land B, Garssen J, Netea MG. 2012. Modulation of Toll-like receptor

ligands and Candida albicans-induced cytokine responses by specific
probiotics. Cytokine 59:159 –165. https://doi.org/10.1016/j.cyto.2012.03
.020.

253. Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M,
Takeshita K, Kanai T, Saijo S, Ohno N, Iwakura Y. 2015. Inhibition of
dectin-1 signaling ameliorates colitis by inducing Lactobacillus-
mediated regulatory T cell expansion in the intestine. Cell Host Microbe
18:183–197. https://doi.org/10.1016/j.chom.2015.07.003.

254. Walter J. 2008. Ecological role of lactobacilli in the gastrointestinal tract:
implications for fundamental and biomedical research. Appl Environ
Microbiol 74:4985– 4996. https://doi.org/10.1128/AEM.00753-08.

255. Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, Simms-
Waldrip TR, Xie Y, Hooper LV, Koh AY. 2015. Activation of HIF-1alpha
and LL-37 by commensal bacteria inhibits Candida albicans coloniza-
tion. Nat Med 21:808 – 814. https://doi.org/10.1038/nm.3871.

256. Lopez-Medina E, Koh AY. 2016. The complexities of bacterial-fungal
interactions in the mammalian gastrointestinal tract. Microb Cell
3:191–195. https://doi.org/10.15698/mic2016.05.497.

257. Payne S, Gibson G, Wynne A, Hudspith B, Brostoff J, Tuohy K. 2003. In
vitro studies on colonization resistance of the human gut microbiota to
Candida albicans and the effects of tetracycline and Lactobacillus
plantarum LPK. Curr Issues Intest Microbiol 4:1– 8.

258. Falagas ME, Betsi GI, Athanasiou S. 2006. Probiotics for prevention of
recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother
58:266 –272. https://doi.org/10.1093/jac/dkl246.

259. Manzoni P, Mostert M, Leonessa ML, Priolo C, Farina D, Monetti C,
Latino MA, Gomirato G. 2006. Oral supplementation with Lactobacillus
casei subspecies rhamnosus prevents enteric colonization by Candida
species in preterm neonates: a randomized study. Clin Infect Dis 42:
1735–1742. https://doi.org/10.1086/504324.

260. Leão MVP, Tavares TAA, Gonçalves E Silva CR, Dos Santos SSF, Jun-
queira JC, de Oliveira LD, Jorge AOC. 2018. Lactobacillus rhamnosus
intake can prevent the development of candidiasis. Clin Oral Investig
22:2511–2518. https://doi.org/10.1007/s00784-018-2347-8.

261. Larsson PG, Brandsborg E, Forsum U, Pendharkar S, Andersen KK, Nasic
S, Hammarstrom L, Marcotte H. 2011. Extended antimicrobial treatment
of bacterial vaginosis combined with human lactobacilli to find the
best treatment and minimize the risk of relapses. BMC Infect Dis 11:223.
https://doi.org/10.1186/1471-2334-11-223.

262. Pendharkar S, Brandsborg E, Hammarstrom L, Marcotte H, Larsson PG.
2015. Vaginal colonisation by probiotic lactobacilli and clinical out-
come in women conventionally treated for bacterial vaginosis and
yeast infection. BMC Infect Dis 15:255. https://doi.org/10.1186/s12879
-015-0971-3.

263. Brehm-Stecher BF, Johnson EA. 2003. Sensitization of Staphylococcus
aureus and Escherichia coli to antibiotics by the sesquiterpenoids
nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Che-
mother 47:3357–3360. https://doi.org/10.1128/AAC.47.10.3357-3360
.2003.
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